Skip to main content
Log in

First-principle study of local and electronic structures of yttrium-doped \(\hbox {Ba}(\hbox {Zr}_x \hbox {Ti}_{1-x}) \hbox {O}_3\)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Yttrium substitution in \(\hbox {Ba}(\hbox {Zr}_x \hbox {Ti}_{1-x})\hbox {O}_3\) (BZT) solid solutions has been found to be an effective way to induce relaxor behavior and improve their dielectric and ferroelectric performances. However, the underlying mechanism of such enhancement is not yet well understood. Here we employ density functional theory with the generalized gradient approximation to investigate the effect of yttrium on the structural and electronic properties of BZT for x = 0.125, 0.250, and 0.375. The results will be discussed in terms of yttrium site preference, atomic pair distribution functions (PDFs), cation off-centering and electronic density of states. It was found that yttrium incorporation could occur in either A- or B-site with corresponding defect vacancies and that the effect of the sites of impurities is only to cause small changes in formation energies. The calculated PDFs and cation off-centering indicate that yttrium ions actively induce lattice distortion and increase structural disorder. This implies that the addition of yttrium in BZT suppresses the ferroelectric instabilities and may help to explain the transition from ferroelectric to relaxor state of such materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Ionic coordinates generated during this study are deposited in the Figshare repository (https://www.doi.org/10.6084/m9.figshare.6969515). All other data are available from the authors upon request.

References

  1. P.W. Rehrig, S.E. Park, S.T. McKinstry, G.L. Messing, B. Jones, T.R. Shrout, Piezoelectric properties of zirconium-doped barium titanate single crystals grown by templated grain growth. J. Appl. Phys. 86(3), 1657 (1999). https://doi.org/10.1063/1.370943

    Article  ADS  Google Scholar 

  2. Z. Yu, R. Guo, A.S. Bhalla, Orientation dependence of the ferroelectric and piezoelectric behavior of \(\text{Ba} (\text{Ti}_{1-x} \text{Zr}_x)\text{O}_3\) single crystals. Appl. Phys. Lett. 77(10), 1535 (2000). https://doi.org/10.1063/1.1308276

    Article  ADS  Google Scholar 

  3. Z. Yu, C. Ang, R. Guo, A.S. Bhalla, Piezoelectric and strain properties of \(\text{Ba} (\text{Ti}_{1-x} \text{Zr}_x)\text{O}_3\) ceramics. J. Appl. Phys. 92(3), 1489 (2002). https://doi.org/10.1063/1.1487435

    Article  ADS  Google Scholar 

  4. X. Chou, J. Zhai, X. Yao, Relaxor behavior and dielectric properties of \(\text{La}_2 \text{O}_3\)-doped barium zirconium titanate ceramics for tunable device applications. Mater. Chem. Phys. 109(1), 125 (2008). https://doi.org/10.1016/j.matchemphys.2007.11.005

    Article  Google Scholar 

  5. S. Piskunov, E. Heifets, R. Eglitis, G. Borstel, Bulk properties and electronic structure of \(\text{SrTiO}_3\), \(\text{BaTiO}_3\), \(\text{PbTiO}_3\) perovskites: an ab initio HF/DFT study. Comput. Mater. Sci. 29(2), 165 (2004). https://doi.org/10.1016/j.commatsci.2003.08.036

    Article  Google Scholar 

  6. A. Chassé, S. Borek, K.M. Schindler, M. Trautmann, M. Huth, F. Steudel, L. Makhova, J. Gräfe, R. Denecke, High-resolution X-ray absorption spectroscopy of \(\text{BaTiO}_{3}\): experiment and first-principles calculations. Phys. Rev. B 84, 195135 (2011). https://doi.org/10.1103/PhysRevB.84.195135

    Article  ADS  Google Scholar 

  7. Q.J. Liu, N.C. Zhang, F.S. Liu, H.Y. Wang, Z.T. Liu, \(\text{BaTiO}_3\): Energy, geometrical and electronic structure, relationship between optical constant and density from first-principles calculations. Opt. Mater. 35(12), 2629 (2013). https://doi.org/10.1016/j.optmat.2013.07.034

    Article  ADS  Google Scholar 

  8. D.H. Kim, H.S. Kwok, Pulsed laser deposition of \(\text{BaTiO}_3\) thin films and their optical properties. App. Phys. Lett. 67(13), 1803 (1995). https://doi.org/10.1063/1.115064

    Article  ADS  Google Scholar 

  9. A. Garca, D. Vanderbilt, Electromechanical behavior of \(\text{BaTiO}_3\) from first principles. App. Phys. Lett. 72(23), 2981 (1998). https://doi.org/10.1063/1.121514

    Article  ADS  Google Scholar 

  10. M.G. Stachiotti, Ferroelectricity in \(\text{BaTiO}_3\) nanoscopic structures. App. Phys. Lett. 84(2), 251 (2004). https://doi.org/10.1063/1.1637142

    Article  ADS  Google Scholar 

  11. G.H. Kwei, A.C. Lawson, S.J.L. Billinge, S.W. Cheong, Structures of the ferroelectric phases of barium titanate. J. Phys. Chem. 97(10), 2368 (1993). https://doi.org/10.1021/j100112a043

    Article  Google Scholar 

  12. I. Levin, T.G. Amos, S.M. Bell, L. Farber, T.A. Vanderah, R.S. Roth, B.H. Toby, Phase equilibria, crystal structures, and dielectric anomaly in the \(\text{BaZrO}_3\)-\(\text{CaZrO}_3\) system. J. Solid State Chem. 175(2), 170 (2003). https://doi.org/10.1016/S0022-4596(03)00220-2

    Article  ADS  Google Scholar 

  13. J.W. Bennett, I. Grinberg, A.M. Rappe, Effect of symmetry lowering on the dielectric response of \({\rm BaZrO}_{3}\). Phys. Rev. B 73, 180102 (2006). https://doi.org/10.1103/PhysRevB.73.180102

    Article  ADS  Google Scholar 

  14. T. Tsurumi, Y. Yamamoto, H. Kakemoto, S. Wada, H. Chazono, H. Kishi, Dielectric properties of \(\text{BaTiO}_3\)\(\text{BaZrO}_3\) ceramics under a high electric field. J. Mater. Res. 17(4), 755759 (2002). https://doi.org/10.1557/JMR.2002.0110

    Article  Google Scholar 

  15. R. Farhi, M. El Marssi, A. Simon, J. Ravez, A raman and dielectric study of ferroelectric \(\text{Ba} (\text{Ti}_{1-x} \text{Zr}_x)\text{O}_3\) ceramics. Eur. Phys. J. B 9(4), 599 (1999). https://doi.org/10.1007/s100510050803

    Article  ADS  Google Scholar 

  16. J. Ravez, C. Broustera, A. Simon, Lead-free ferroelectric relaxor ceramics in the \(\text{BaTiO}_3\)\(\text{BaZrO}_3\)\(\text{CaTiO}_3\) system. J. Mater. Chem. 9, 1609 (1999). https://doi.org/10.1039/A902335F

    Article  Google Scholar 

  17. T. Maiti, R. Guo, A.S. Bhalla, Structure-property phase diagram of \(\text{BaZr}_x \text{Ti}_{1-x} \text{O}_3\) system. J. Am. Ceram. Soc. 91(6), 1769 (2008). https://doi.org/10.1111/j.1551-2916.2008.02442.x

    Article  Google Scholar 

  18. A. Simon, J. Ravez, M. Maglione, The crossover from a ferroelectric to a relaxor state in lead-free solid solutions. J. Phys. Condens. Matter 16(6), 963 (2004)

    Article  ADS  Google Scholar 

  19. S. Ke, H. Fan, H. Huang, H.L.W. Chan, S. Yu, Dielectric dispersion behavior of \(\text{Ba} (\text{Zr}_x \text{Ti}_{1-x})\text{O}_3\) solid solutions with a quasiferroelectric state. J. Appl. Phys. 104(3), 034108 (2008). https://doi.org/10.1063/1.2964088

    Article  ADS  Google Scholar 

  20. S.Y. Liu, E. Zhang, S. Liu, D.J. Li, Y. Li, Y. Liu, Y. Shen, S. Wang, Composition- and pressure-induced relaxor ferroelectrics: first-principles calculations and landau-devonshire theory. J. Am. Ceram. Soc. 99(10), 3336 (2016). https://doi.org/10.1111/jace.14350

    Article  Google Scholar 

  21. S.Y. Liu, Y. Meng, S. Liu, D.J. Li, Y. Li, Y. Liu, Y. Shen, S. Wang, Compositional phase diagram and microscopic mechanism of \(\text{Ba}_{1-x} \text{Ca}_x \text{Zr}_y \text{Ti}_{1-y} \text{O}_3\) relaxor ferroelectrics. Phys. Chem. Chem. Phys. 19, 22190 (2017). https://doi.org/10.1039/C7CP04530A

    Article  Google Scholar 

  22. C. Ostos, L. Mestres, M. Martnez-Sarrin, J. Garca, A. Albareda, R. Perez, Synthesis and characterization of a-site deficient rare-earth doped \(\text{BaZr}_x \text{Ti}_{1-x} \text{O}_3\) perovskite-type compounds. Solid State Sci. 11(5), 1016 (2009). https://doi.org/10.1016/j.solidstatesciences.2009.01.006

    Article  ADS  Google Scholar 

  23. L. Gao, J. Zhai, Y. Zhang, X. Yao, Influence of rare-earth addition on dielectric properties and relaxor behavior of barium zirconium titanate thin films. J. Appl. Phys. 107(6), 064105 (2010). https://doi.org/10.1063/1.3330753

    Article  ADS  Google Scholar 

  24. X. Chou, J. Zhai, H. Jiang, X. Yao, Dielectric properties and relaxor behavior of rare-earth (La, Sm, Eu, Dy, Y) substituted barium zirconium titanate ceramics. J. Appl. Phys. 102(8), 084106 (2007). https://doi.org/10.1063/1.2799081

    Article  ADS  Google Scholar 

  25. X. Diez-Betriu, J. Garcia, C. Ostos, A. Boya, D. Ochoa, L. Mestres, R. Perez, Phase transition characteristics and dielectric properties of rare-earth (La, Pr, Nd, Gd) doped \(\text{Ba} (\text{Zr}_{0.09} \text{Ti}_{0.91})\text{O}_3\) ceramics. Mater. Chem. Phys. 125(3), 493 (2011). https://doi.org/10.1016/j.matchemphys.2010.027

    Article  Google Scholar 

  26. S. Ghosh, S. Rout, Induced instability in local structure and ferroelectric polarization of rare earth modified BZT relaxor ceramics. Curr. Appl. Phys. 16(9), 989 (2016). https://doi.org/10.1016/j.cap.2016.05.018

    Article  ADS  Google Scholar 

  27. S.B. Reddy, K.P. Rao, M.R. Rao, Effect of La substitution on the structural and dielectric properties of BaZr0.1Ti0.9O3 ceramics. J Alloys Compd. 481(1), 692 (2009). https://doi.org/10.1016/j.jallcom.2009.03.075

    Article  Google Scholar 

  28. D. Shan, Y. Qu, J. Song, Dielectric properties and substitution preference of yttrium doped barium zirconium titanate ceramics. Solid State Commun. 141(2), 65 (2007). https://doi.org/10.1016/j.ssc.2006.09.050

    Article  ADS  Google Scholar 

  29. T. Badapanda, L.S. Cavalcante, G.E. da Luz, N.C. Batista, S. Anwar, E. Longo, Effect of yttrium doping in barium zirconium titanate ceramics: a structural, impedance, and modulus spectroscopy study. Metall. Mater. Tran. A 44(9), 4296 (2013). https://doi.org/10.1007/s11661-013-1770-3

    Article  Google Scholar 

  30. T. Badapanda, S.K. Rout, L.S. Cavalcante, J.C. Sczancoski, S. Panigrahi, T.P. Sinha, E. Longo, Structural and dielectric relaxor properties of yttrium-doped \(\text{Ba} (\text{Zr}_{0.25} \text{Ti}_{0.75})\text{O}_3\) ceramics. Mater. Chem. Phys. 121(1), 147 (2010). https://doi.org/10.1016/j.matchemphys.2010.01.008

    Article  Google Scholar 

  31. P.A. Jha, A. Jha, Effects of yttrium substitution on structural and electrical properties of barium zirconate titanate ferroelectric ceramics. Curr. Appl. Phys. 13(7), 1413 (2013). https://doi.org/10.1016/j.cap.2013.04.032

    Article  ADS  Google Scholar 

  32. P.K. Patel, K. Yadav, Effect of yttrium on microstructure, dielectric, ferroelectric and optical properties of BaZr0.10Ti0.90O3 nanoceramics. Phys. B Condens. Matter 442, 39 (2014). https://doi.org/10.1016/j.physb.2014.02.020

    Article  ADS  Google Scholar 

  33. X.Y. Zhao, Y.H. Wang, M. Zhang, N. Zhao, S. Gong, Q. Chen, First-principles calculations of the structural, electronic and optical properties of \(\text{BaZr}_x \text{Ti}_{1-x} \text{O}_3\) ( \(x = 0\), 0.25, 0.5, 0.75). Chin. Phys. Lett. 28(6), 067101 (2011)

    Article  ADS  Google Scholar 

  34. P. Erhart, K. Albe, Thermodynamics of mono- and di-vacancies in barium titanate. J. Appl. Phys. 102(8), 084111 (2007). https://doi.org/10.1063/1.2801011

    Article  ADS  Google Scholar 

  35. S. Körbel, C. Elsässer, Ab initio and atomistic study of ferroelectricity in copper-doped potassium niobate. Phys. Rev. B 84, 014109 (2011). https://doi.org/10.1103/PhysRevB.84.014109

    Article  ADS  Google Scholar 

  36. D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990). https://doi.org/10.1103/PhysRevB.41.7892

    Article  ADS  Google Scholar 

  37. P. Giannozzi, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21(39), 395502 (2009). http://www.quantum-espresso.org

    Google Scholar 

  38. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  39. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  ADS  MathSciNet  Google Scholar 

  40. P.E. Blöchl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223 (1994). https://doi.org/10.1103/PhysRevB.49.16223

    Article  ADS  Google Scholar 

  41. P. Haas, F. Tran, P. Blaha, Calculation of the lattice constant of solids with semilocal functionals. Phys. Rev. B 79, 085104 (2009). https://doi.org/10.1103/PhysRevB.79.085104

    Article  ADS  Google Scholar 

  42. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32(5), 751 (1976). https://doi.org/10.1107/S0567739476001551

    Article  ADS  Google Scholar 

  43. I.K. Jeong, C.Y. Park, J.S. Ahn, S. Park, D.J. Kim, Ferroelectric-relaxor crossover in \(\text{Ba}({\text{Ti}}_{1-x}{\text{Zr}}_{x}) {\text{O}}_{3}\) studied using neutron total scattering measurements and reverse monte carlo modeling. Phys. Rev. B 81, 214119 (2010). https://doi.org/10.1103/PhysRevB.81.214119

    Article  ADS  Google Scholar 

  44. C. Laulhé, F. Hippert, R. Bellissent, A. Simon, G.J. Cuello, Local structure in \({\text{BaTi}}_{1-x}{\text{Zr}}_{x}{\text{O}}_{3}\) relaxors from neutron pair distribution function analysis. Phys. Rev. B 79, 064104 (2009). https://doi.org/10.1103/PhysRevB.79.064104

    Article  ADS  Google Scholar 

  45. R. Kagimura, M. Suewattana, D.J. Singh, (Ba, K, La)\({\text{ZrO}}_{3}\) as a possible lead-free ferroelectric: density functional calculations. Phys. Rev. B 78, 012103 (2008). https://doi.org/10.1103/PhysRevB.78.012103

    Article  ADS  Google Scholar 

  46. A. Yamanaka, M. Kataoka, Y. Inaba, K. Inoue, B. Hehlen, E. Courtens, Evidence for competing orderings in strontium titanate from hyper-Raman scattering spectroscopy. Europhys. Lett. 50(5), 688 (2000). https://doi.org/10.1209/epl/i2000-00325-6

    Article  ADS  Google Scholar 

  47. A. Singh, A. Senyshyn, H. Fuess, D. Pandey, Ferroelectric and antiferrodistortive phase transition in the multiferroic (\(\text{Bi}_{0.8} \text{Ba}_{0.2}\))(\(\text{Fe}_{0.8} \text{Ti}_{0.2})\text{O}_3\): A high temperature neutron powder diffraction study. J. Appl. Phys. 110(2), 024111 (2011). https://doi.org/10.1063/1.3606500

    Article  ADS  Google Scholar 

  48. R. Ranjan, D. Pandey, N.P. Lalla, Novel features of \({\rm Sr}_{1-x}{\rm Ca}_{x} {\rm TiO}_{3}\) phase diagram: evidence for competing antiferroelectric and ferroelectric interactions. Phys. Rev. Lett. 84, 3726 (2000). https://doi.org/10.1103/PhysRevLett.84.3726

    Article  ADS  Google Scholar 

  49. A.N. Morozovska, E.A. Eliseev, M.D. Glinchuk, L.Q. Chen, V. Gopalan, Interfacial polarization and pyroelectricity in antiferrodistortive structures induced by a flexoelectric effect and rotostriction. Phys. Rev. B 85, 094107 (2012). https://doi.org/10.1103/PhysRevB.85.094107

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the Thailand Research Fund and the Department of Physics, Mahidol University. The authors would like to thank W. Singsomroj and K. Matan for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Suewattana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thammada, W., Suewattana, M. First-principle study of local and electronic structures of yttrium-doped \(\hbox {Ba}(\hbox {Zr}_x \hbox {Ti}_{1-x}) \hbox {O}_3\). Appl. Phys. A 124, 644 (2018). https://doi.org/10.1007/s00339-018-2063-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2063-x

Navigation