Skip to main content
Log in

Room temperature ferromagnetism of nanocrystalline Nd1.90Ni0.10O3−δ

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanocrystalline sample of Ni2+ doped neodymium oxide (Nd1.90Ni0.10O3−δ, NNO) is synthesized by co-precipitation method. Analysis of X-ray diffraction (XRD) pattern by Rietveld refinement method confirms the desired phase of NNO and complete substitution of Ni2+ ions in the Nd2O3 lattice. Analyses of transmission electron microscopy (TEM) and Raman spectroscopy of NNO recorded at room temperature (RT) also substantiate this fact. Besides, no traces of impurities are found in the analyses of XRD, TEM and Raman data. Room temperature hysteresis loop of NNO suggests the presence of weak ferromagnetism (FM) in low field region (~ 600 mT), but in high field region paramagnetism of the host is more prominent. Magnetization vs. temperature (MT) curve in the entire temperature range (300–5 K) is analyzed successfully by a combined equation generated from three-dimensional (3D) spin wave model and Curie–Weiss law, which suggests the presence of mixed paramagnetic phase together with ferromagnetic phase in the doped sample. The onset of magnetic ordering is analyzed by oxygen vacancy mediated F-center exchange (FCE) coupling mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Venkateshan, C.B. Fitzgerald, J.M.D. Coey, Nature 430, 630 (2004)

    Article  ADS  Google Scholar 

  2. H. Ohno, Science 281, 951–956 (1998)

    Article  ADS  Google Scholar 

  3. P.P. Murmu, J. Kennedy, B.J. Ruck, G.V.M. Williams, A. Markwitz, S. Rubanov, A.A. Suvorova, J. Mater. Sci. 47, 1119–1126 (2012)

    Article  ADS  Google Scholar 

  4. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  5. F. Matsukura, H. Ohno, T. Dietl, Handbook of Magnetic Materials, vol. 14 (Elsevier, Amsterdam, 2002)

    Google Scholar 

  6. R.K. Singhal, P. Kumari, S. Kumar, S.N. Dolia, Y.T. Xing, M. Alzamora, U.P. Deshpande, T. Shripathi, E. Saitovitch, J. Phys. D Appl. Phys. 44, 165002 (2011)

    Article  ADS  Google Scholar 

  7. Q.Y. Wen, H.W. Zhang, Q.H. Yang, Y.Q. Song, J.Q. Xiao, J. Mag. Mag. Mater. 321, 3110–3113 (2009)

    Article  ADS  Google Scholar 

  8. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173–179 (2005)

    Article  ADS  Google Scholar 

  9. I.Z. Mitrovic, S. Hall, J. Telecommun. Inf. Technol. 4, 51–60 (2009)

    Google Scholar 

  10. J. Leveneur, J. Kennedy, G.V.M. Williams, J. Metson, A. Markwitz, Appl. Phys. Lett. 98, 053111 (2011)

    Article  ADS  Google Scholar 

  11. J. Wan, L. Qi, B. Chen, F. Song, J. Liu, J. Dong, G. Wang, Appl. Phys. Lett. 95, 152901–152903 (2009)

    Article  ADS  Google Scholar 

  12. K. Kaviyarasu, P.P. Murmu, J. Kennedy, F.T. Thema, D. Letsholathebe, L. Kotsedi, M. Maaza, Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater Atoms 409, 147–152 (2017)

    Article  ADS  Google Scholar 

  13. K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Jayachandran, R. Ladchumananandasiivam, U. Umbelino De Gomes, M. Maaza, Ceram. Int. 42, 8385–8394 (2016)

    Article  Google Scholar 

  14. N.W. Gray, A. Tiwari, J. Appl. Phys. 110, 033903 (2011)

    Article  ADS  Google Scholar 

  15. A. Bandyopadhyay, S. Sutradhar, B.J. Sarkar, A.K. Deb, P.K. Chakrabarti, Appl. Phys. Lett. 100, 252411 (2012)

    Article  ADS  Google Scholar 

  16. A. Bandyopadhyay, A.K. Deb, S. Kobayashi, K. Yoshimura, P.K. Chakrabarti, J. Alloy Compd. 611, 324–328 (2014)

    Article  Google Scholar 

  17. J. Mandal, B.J. Sarkar, A.K. Deb, P.K. Chakrabarti, J. Mag. Mag. Mater. 371, 35–42 (2014)

    Article  ADS  Google Scholar 

  18. B.J. Sarkar, A. Bandyopadhyay, J. Mandal, A.K. Deb, P.K. Chakrabarti, J. Alloy Compd. 656, 339–346 (2016)

    Article  Google Scholar 

  19. B.J. Sarkar, A.K. Deb, P.K. Chakrabarti, RSC Adv. 6, 6395–6404 (2016)

    Article  Google Scholar 

  20. B.J. Sarkar, J. Mandal, M. Dalal, A. Bandyopadhyay, B. Satpati, P.K. Chakrabarti, J. Electron. Mater. 47, 1768–1779 (2018)

    Article  ADS  Google Scholar 

  21. J. Mandal, M. Dalal, B.J. Sarkar, P.K. Chakrabarti, J. Electron. Mater. 46, 1107–1113 (2016)

    Article  ADS  Google Scholar 

  22. B. Umesh, B. Eraiah, H. Nagabhushana, S.C. Sharma, B.M. Nagabhushana, C. Shivakumara, J.L. Rao, R.P.S. Chakradhar, Spectrochim. Acta Part A 94, 365–371 (2012)

    Article  ADS  Google Scholar 

  23. J.M.D. Coey, A.P. Douvalis, C.B. Fitzgerald, M. Venkatesan, Appl. Phys. Lett. 84, 1332–1334 (2004)

    Article  ADS  Google Scholar 

  24. B. Santara, P.K. Giri, S. Dhara, K. Imakita, M. Fujii, J. Phys. D Appl. Phys. 47, 235304 (2014)

    Article  ADS  Google Scholar 

  25. D. Mishra, B.P. Mandal, R. Mukherjee, R. Naik, G. Lawes, B. Nadgorny, Appl. Phys. Lett. 102, 182404 (2013)

    Article  ADS  Google Scholar 

  26. M. Dalal, A. Mallick, A.S. Mahapatra, A. Mitra, A. Das, D. Das, P.K. Chakrabarti, Mater. Res. Bull. 76, 389–401 (2016)

    Article  Google Scholar 

  27. L. Lutterotti, (2006) MAUD, Version 2.046. http://www.ing.unitn.it/maud/. Accessed 2 Apr 2017

  28. N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, M. Pärs, J. Phys. Conf. Ser. 93, 012039 (2007)

    Article  Google Scholar 

  29. B. Santara, B. Pal, P.K. Giri, J. Appl. Phys. 110, 114322 (2011)

    Article  ADS  Google Scholar 

  30. W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yin, Q. Chen, J. Phys. D Appl. Phys. 33, 912–916 (2000)

    Article  ADS  Google Scholar 

  31. L.K. Pan, Q. Sun Chang, C.M. Li, J. Phys. Chem. B 108, 3404–3406 (2004)

    Article  Google Scholar 

  32. D.L. Hou, X.J. Ye, X.Y. Zhao, H.J. Meng, H.J. Zhou, X.L. Li, C.M. Zhen, J. Appl. Phys. 102(3), 033905 (2007)

    Article  ADS  Google Scholar 

  33. Q.Y. Wen, H.W. Zhang, Y.Q. Song, Q.H. Yang, H. Zhu, J.Q. Xiao, J. Phys. Condens. Matter 19, 246205 (2007)

    Article  ADS  Google Scholar 

  34. S.K.S. Patel, P. Dhak, M.K. Kim, J.H. Lee, M. Kim, S.K. Kim, J. Mag. Mag. Mater. 403, 155–160 (2016)

    Article  ADS  Google Scholar 

  35. G.W. Pratt Jr., Phys. Rev. 108, 1233–1242 (1957)

    Article  ADS  Google Scholar 

  36. A.C. Durst, R.N. Bhatt, P.A. Wolff, Phys. Rev. B 65, 235205 (2002)

    Article  ADS  Google Scholar 

  37. J.Z. Cai, L. Li, S. Wang, W.Q. Zou, X.S. Wu, F.M. Zhang, Phys. B 424, 42–46 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial assistance provided by DST, Govt. of India, through FIST Programme (File No. SR/FST/PSI-170/2011(C) dated 18.05.2012) and UGC, Govt. of India through the CAS program. Authors further acknowledge the UGC-DAE-CSR, Kolkata Centre for providing facility to measure the magnetic property. Authors acknowledge Dr. B. Satpati, Saha Institute of Nuclear Physics, Kolkata for providing facility for TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Chakrabarti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, B.J., Mandal, J., Dalal, M. et al. Room temperature ferromagnetism of nanocrystalline Nd1.90Ni0.10O3−δ. Appl. Phys. A 124, 393 (2018). https://doi.org/10.1007/s00339-018-1809-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1809-9

Navigation