Skip to main content
Log in

Adjustability of resonance frequency by external magnetic field and bias electric field of sandwich magnetoelectric PZT/NFO/PZT composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Sandwich magnetoelectric composites of PZT/NFO/PZT (PNP) have been prepared by laminating PZT5, NiFe2O4, and PZT5 ceramics in turn with polyvinyl alcohol (PVA) paste. A systematic study of structural, magnetic and ferroelectric properties is undertaken. Structural studies carried out by X-ray diffraction indicate formation of cubic perovskite phase of PZT5 ceramic and cubic spinel phase of NiFe2O4 ceramic. As increasing the content of PZT5 phase, ferroelectric loops and magnetic loops of PNP composites showed increasing remnant electric polarizations and decreasing remnant magnetic moments separately. Both external magnetic fields and bias voltages could regulate the basal radial resonance frequency of the composites, which should be originated with the transformation and coupling of the stress between the piezoelectric phase and magnetostrictive phase. Such magnetoelectric composite provides great opportunities for electrostatically tunable devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N.A. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005)

    Article  Google Scholar 

  2. J.F. Scott, Data storage: multiferroic memories. Nat. Mater. 6, 256–257 (2007)

    Article  ADS  Google Scholar 

  3. R. Ramesh, N.A. Spaldin, Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007)

    Article  ADS  Google Scholar 

  4. C. Ederer, N.A. Spaldin, Magnetoelectrics: a new route to magnetic ferroelectrics. Nat. Mater. 3, 849–851 (2004)

    Article  ADS  Google Scholar 

  5. P. Hayes, S. Salzer, J. Reermann, E. Yarar, V. Röbisch, A. Piorra, D. Meyners, M. Höft, R. Knöchel, G. Schmidt, E. Quandt, Electrically modulated magnetoelectric sensors. Appl. Phys. Lett. 108, 182902 (2016)

    Article  ADS  Google Scholar 

  6. Y. Shen, J.Q. Gao, Y.J. Wang, J.F. Li, D. Viehland, Thermal stability of magnetoelectric sensors. Appl. Phys. Lett. 100, 173505 (2012)

    Article  ADS  Google Scholar 

  7. S.X. Dong, J.F. Li, D. Viehland, Characterization of magnetoelectric laminate composites operated in longitudinal-transverse and transverse-transverse modes. J. Appl. Phys. 95, 2625 (2004)

    Article  ADS  Google Scholar 

  8. S.X. Dong, J.Y. Zhai, N.G. Wang, F.M. Bai, J.F. Li, D. Viehland, T.A. Lograsso, Fe-Ga/Pb(Mg1/3Nb2/3)O3-PbTiO3 magnetoelectric laminate composites. Appl. Phys. Lett. 87, 222504 (2005)

    Article  ADS  Google Scholar 

  9. J.L. Jones, J.D. Starr, J.S. Andrew, Anisotropy in magnetoelectric composites. Appl. Phys. Lett. 104, 242901 (2014)

    Article  ADS  Google Scholar 

  10. L.G. Shen, M.H. Li, J.Q. Gao, Y. Shen, J.F. Li, D. Viehland, X. Zhuang, M.L.C. Sing, C. Cordier, S. Saez, C. Dolabdjian, Magnetoelectric nonlinearity in magnetoelectric laminate sensors. J. Appl. Phys. 110, 114510 (2011)

    Article  ADS  Google Scholar 

  11. J.V.D. Boomgaard, D.R. Terrell, R.A.J. Born, H.F.J.I. Giller, An in situ grown eutectic magnetoelectric composite material. J. Mater. Sci. 9, 1705–1709 (1974)

    Article  ADS  Google Scholar 

  12. G. Srinivasan, E.T. Rasmussen, R. Hayes, Magnetoelectric effects in ferrite-lead zirconate titanate layered composites: the influence of zinc substitution in ferrites. Phys. Rev. B 67, 014418 (2003)

    Article  ADS  Google Scholar 

  13. G. Srinivasan, E.T. Rasmussen, A.A. Bush, K.E. Kamentsev, V.F. Meshcheryakov, Y.K. Fetisov, Structural and magnetoelectric properties of MFe2O4-PZT (M = Ni, Co) and Lax(Ca, Sr)1-xMnO3-PZT multilayer composites. Appl. Phys. A 78, 721–728 (2004)

    Article  ADS  Google Scholar 

  14. S.X. Dong, J.R. Cheng, J.F. Li, D. Viehland, Enhanced magnetoelectric effects in laminate composites of Terfenol-D/Pb(Zr, Ti)O3 under resonant drive. Appl. Phys. Lett. 83, 4812 (2003)

    Article  ADS  Google Scholar 

  15. F. Yang, Y.M. Wen, P. Li, M. Zheng, L.X. Bian, Resonant magnetoelectric response of magnetostrictive/piezoelectric laminate composite in consideration of losses. Sens. Actuators A 141, 129–135 (2008)

    Article  Google Scholar 

  16. M.I. Bichurin, D.A. Filippov, V.M. Petrov, V.M. Laletsin, N. Paddubnaya, G. Srinivasan, Resonance magnetoelectric effects in layered magnetostrictive-piezoelectric composites. Phys. Rev. B 68, 132408 (2003)

    Article  ADS  Google Scholar 

  17. S.X. Dong, J.F. Li, D. Viehland, J. Cheng, L.E. Cross, A strong magnetoelectric voltage gain effect in magnetostrictive-piezoelectric composite. Appl. Phys. Lett. 85, 3534 (2004)

    Article  ADS  Google Scholar 

  18. U. Laletsin, N. Padubnaya, G. Srinivasan, C.P. DeVreugd, Frequency dependence of magnetoelectric interactions in layered structures of ferromagnetic alloys and piezoelectric oxides. Appl. Phys. A 78, 33–36 (2004)

    Article  ADS  Google Scholar 

  19. S.X. Dong, J.F. Li, D. Viehland, Vortex magnetic field sensor based on ring-type magnetoelectric laminate. Appl. Phys. Lett. 85, 2307 (2004)

    Article  ADS  Google Scholar 

  20. K. Bi, Y.G. Wang, W. Wu, Tunable resonance frequency of magnetoelectric layered composites. Sens. Actuators A 166, 48–51 (2011)

    Article  Google Scholar 

  21. J.Y. Zhai, Z.P. Xing, S.X. Dong, J.F. Li, D. Viehland, Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature. Appl. Phys. Lett. 88, 062510 (2006)

    Article  ADS  Google Scholar 

  22. S.X. Dong, J.Y. Zhai, J.F. Li, D. Viehland, Small dc magnetic field response of magnetoelectric laminate composites. Appl. Phys. Lett. 88, 082907 (2006)

    Article  ADS  Google Scholar 

  23. Z. Shi, J. Ma, Y.H. Lin, C.W. Nan, Magnetoelectric resonance behavior of simple bilayered Pb(Zr, Ti)O3–(Tb, Dy)Fe2/epoxy composites. J. Appl. Phys. 101, 043902 (2007)

    Article  ADS  Google Scholar 

  24. O. Raymond, R. Font, J. Portelles, J.M. Siqueiros, Magnetoelectric coupling study in multiferroic Pb(Fe0.5Nb0.5)O3 ceramics through small and large electric signal standard measurements. J. Appl. Phys. 109, 094106 (2011)

    Article  ADS  Google Scholar 

  25. S. Singh, S.B. Krupanidhi, Synthesis, structural characterization and ferroelectric properties of Pb0.76Ca0.24TiO3 nanotubes. Mater. Chem. Phys. 131, 443–448 (2011)

    Article  Google Scholar 

  26. T. Cheng, L.F. Xu, P.B. Qi, C.P. Yang, R.L. Wang, H.B. Xiao, Tunable dielectric behaviors of magnetic field of PZT5/NiFe2O4 ceramic particle magnetoelectric composites at room temperature. J Alloy Compd 602, 269–274 (2014)

    Article  Google Scholar 

  27. S.X. Dong, J.F. Li, D. Viehland, Longitudinal and transverse magnetoelectric voltage coefficients of magnetostrictive/piezoelectric laminate composite: theory. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1253–1261 (2003)

    Article  Google Scholar 

  28. Y.J. Wang, C.M. Leung, S.W. Or, X.Y. Zhao, H.S. Luo, X.K. Lv, Z.D. Zhang, Magnetoelectric effect in laminates of polymer-based pseudo-1-3 (Tb0.3Dy0.7)0.5Pr0.5Fe1.55 composite and 0.3Pb(Mg1/3Nb2/3)O3-0.7PbTiO3 single crystal. Appl. Phys. A 97, 201–204 (2009)

    Article  ADS  Google Scholar 

  29. X.J. Zheng, X.L. Liu, A nonlinear constitutive model for Terfenol-D rods. J. Appl. Phys. 97, 053901 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the projects of National Natural Science Foundation of China (Grant Numbers 51402094 and 11674086) and the project of Hubei Provincial Department of Science & Technology (Grant No. 2015CFB549).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling-Fang Xu or Chang-Ping Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, LF., Feng, X., Sun, K. et al. Adjustability of resonance frequency by external magnetic field and bias electric field of sandwich magnetoelectric PZT/NFO/PZT composites. Appl. Phys. A 123, 497 (2017). https://doi.org/10.1007/s00339-017-1082-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1082-3

Navigation