Skip to main content
Log in

Mesoporous nanocomposite coatings for photonic devices: sol–gel approach

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Thermally stable, optically active inorganic nanocomposites, i.e., aluminum–silicate (AS) and silica–titania (ST), are synthesized via acid-catalyzed low-temperature sol–gel method in order to get stable, crack-free coating material for photonic devices. The samples are characterized by atomic force microscope, field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer–Emmett––Teller (BET) surface area, Barrett–Joyner–Halenda (BJH) pore size distribution surface analysis and UV–Vis spectroscopy. Microscopic results show good incorporation of ST and AS particles as composites with grain size within range of 12–17 and 62–109 nm, respectively. EDX analysis substantiated the stoichiometric formation of homogeneous nanocomposites. XRD of the films reveals primary polycrystalline anatase titania phase and mullite phase of ST and AS nanocomposites. FTIR confirms the heterogeneous bond linkage between titania, silica and alumina species. Furthermore, the fabricated samples have mesoporous nature with high surface area, large pore volume and diameter. The tunable refractive index of 1.33–1.35 with high transparency is obtained for synthesized nanocomposites. The experimental findings show that these physically modified and thermally stable alumina- and titania-doped silica-based composite coatings are promising for photonic devices modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Wicht, R. Ferrini, S. Schuttel, L. Zuppiroli, Nanoporous films with low refractive index for large-surface broad-band anti-reflection coatings. Macromol. Mater. Eng. 295, 628–636 (2010)

    Article  Google Scholar 

  2. A thesis submitted by Refik Sina Toru, Novel Nanocomposite Coatings of Nanoparticles, Degree of Master of Science, April 2011 Bilkent University, 1–74

  3. S. Islam, R. Rahman, Z. Othaman, S. Riaz, M.A. Saeed, S. Naseem, Preparation and characterization of crack-free sol–gel based SiO2–TiO2 hybrid nanoparticle film. J. Sol-Gel. Sci. Technol. 68, 162–168 (2013)

    Article  Google Scholar 

  4. S. Riaz, S. Naseem, Controlled nanostructuring of TiO2 nanoparticles—a sol gel approach. J. Sol-Gel. Sci. Technol. 74(2), 299–309 (2015)

    Article  Google Scholar 

  5. S. Islam, N. Bidin, S. Riaz, S. Naseem, Sol–gel based phenolphthalein encapsulated heterogeneous silica–titania optochemical pH nanosensor. J. Ind. Eng. Chem. 34, 258–268 (2016)

    Article  Google Scholar 

  6. S. Islam, N. Bidin, S. Riaz, S. Naseem, F.M. Marsin, Mesoporous SiO2–TiO2 nanocomposite for pH sensing. Sens. Actuators B: Chem. 221, 993–1002 (2015)

    Article  Google Scholar 

  7. M.M.S. Sanad, M.M. Rashad, E.A. Abdel-Aal, M.F. El-Shahat, K. Powers, Effect of Y3+, Gd3+ and La3+ dopant ions on structural, optical and electrical properties of o-mullite nanoparticles. J. Rare Earths 32(1), 37 (2014)

    Article  Google Scholar 

  8. S. Islam, N. Bidin, S. Riaz, S. Naseem, F.M. Marsin, Correlation between structural and optical properties of surfactant assisted sol–gel based mesoporous SiO2–TiO2 hybrid nanoparticles for pH sensing/optochemical sensor. Sens. Actuators B: Chem. 225, 66–73 (2016)

    Article  Google Scholar 

  9. Y.H. Tana, J.A. Davis, K. Fujikawa, N.V. Ganesh, A.V. Demchenko, K.J. Stinea, Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy. J. Mater. Chem. 22(14), 6733–6745 (2012)

    Article  Google Scholar 

  10. J.A.S. Costa, A.C.F.S. Garcia, D.O. Santos, V.H.V. Sarmento, A.L.M. Porto, M.E. Mesquita, L.P.C. Romao, A new functionalized MCM-41 mesoporous material for use in environmental applications. J. Braz. Chem. Soc. 25(2), 197–207 (2014)

    Google Scholar 

  11. H. Mehranpour, M. Askari, M. Sasani Ghamsari, H. Farzalibeik, Study on the phase transformation kinetics of Sol-Gel drived TiO2 nanoparticles. J. Nanomater. 2010, 626978 (2010)

  12. J. Sanz, A. Madani, J.M. Serratosa, J.S. Moya, S. Aza, Aluminum-27 and silicon-29 magic-angle spinning nuclear magnetic resonance study of the kaolinite-mullite transformation. J. Am. Ceramic Soc. 71(10), C418–C421 (1988)

    Article  Google Scholar 

  13. J.A. Navio, G. Colon, P.J. Sanchez-Soto, M. Macias, Effects of H2O2 and SO42-species on the crystalline structure and surface properties of ZrO2 processed by alkaline precipitation. Chem. Mater. 9(5), 1256–1261 (1997)

    Article  Google Scholar 

  14. J. Pascual, J. Zapatero, C. Maroaa, J.A. Haro, I. Varona, A. Justo, J. Pearez-Rodroaguez, P.J. Saanchez-Soto, Porous mullite and mullite-based composites by chemical processing of kaolinite and aluminium metal wastes. J. Mater. Chem. 10, 1409–1414 (2000)

    Article  Google Scholar 

  15. Thesis by Giovanni Schiavon, Sol-Gel Derived Nanocomposites-Synthesis, Spectroscopy, Atomic Force Microscopy, Technische University Mnchen

  16. L.A. Aksay, D.M. Dabbs, M. Sarikaya, Mullite for structural, electronic, and optical applications. J. Am. Ceramic Soc. 74, 2343–2358 (1991)

    Article  Google Scholar 

  17. X. Wang, G. Wu, B. Zhou, Materials. 6, 2819–2830 (2013)

    Article  ADS  Google Scholar 

  18. S. Islam, R.A. Rahman, Z. Othaman, S. Riaz, S. Naseem, Synthesis and characterization of hybrid matrix with encapsulated organic sensing dyes for pH sensing application. J. Ind. Eng. Chem. 20, 4408–4414 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors like to express their gratitude to the Government of Malaysia through grant FRGS vote 4F543 for the financial support in this project. Thanks are also due to UTM through RMC for awarding the Postdoctoral fellowship to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shumaila Islam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, S., Bidin, N., Riaz, S. et al. Mesoporous nanocomposite coatings for photonic devices: sol–gel approach. Appl. Phys. A 122, 935 (2016). https://doi.org/10.1007/s00339-016-0430-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0430-z

Keywords

Navigation