Skip to main content
Log in

Paenibacillus glycinis sp. nov., an Endophytic Bacterium Isolated from the Nodules of Soybean (Glycine max (L.) Merr)

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A Gram-negative-staining, endospore-forming, rod-shaped bacterium, designated T1T, was isolated from root nodules of soybean (Glycine max (L.) Merr) in Heilongjiang Province of China. The isolate was identified as a member of the genus Paenibacillus based on phenotypic and phylogenetic characteristics. The 16S rRNA sequence was closely related to that of Paenibacillus sacheonensis SY01T with a similarity of 98.4%. Average nucleotide identity and in silico DNA–DNA hybridization values between strain T1T and P. sacheonensis DSM 23054 T were 81.4% and 25.4%, respectively. The DNA G + C content of strain T1T was 58.2 mol%. meso-Diaminopimelic acid was detected in the cell-wall peptidoglycan. The major cellular fatty acids were anteiso-C15:0, iso-C16:0 and iso-C15:0. The predominant respiratory quinone was MK-7. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, five unidentified phospholipids, four unidentified aminophospholipids, an unidentified glycolipid and an unidentified lipid. Based on these results, T1T is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus glycinis sp. nov. is proposed. The type strain is T1T (= CGMCC 1.18563 = KCTC43227).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ANI:

Average nucleotide identity

isDDH:

In silico DNA-DNA hybridization

FAME:

Fatty acid methyl esters

References

  1. Dekaka A, Menasriac T, Benhiziab Y, Chenchouniad H (2020) Endophytic passenger bacteria associated with Genista cinerea nodules growing in North African drylands. Rhizosphere 14:100205. https://doi.org/10.1016/j.rhisph.2020.100205

    Article  Google Scholar 

  2. Ash C, Priest FG, Collins MD (1993) Molecular identifification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64:253–260. https://doi.org/10.1007/BF00873085

    Article  CAS  PubMed  Google Scholar 

  3. Jin HJ, Lv J, Chen SF (2011) Paenibacillus sophorae sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sophora japonica. Int J Syst Evol Microbiol 61:767–771. https://doi.org/10.1099/ijs.0.021709-0

    Article  CAS  PubMed  Google Scholar 

  4. Xie JB, Du ZL, Bai LQ, Tian CF, Zhang YZ, Xie JY, Wang TS, Liu XM, Chen X, Cheng Q, Chen SF, Li JL (2014) Comparative genomic analysis of N2 -fixing and non-N2-fixing Paenibacillus spp.: organization, evolution and expression of the nitrogen fixation genes. PLoS Genet 10:17

    Article  Google Scholar 

  5. Lányí B (1987) Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67. https://doi.org/10.1016/S0580-9517(08)70407-0

    Article  Google Scholar 

  6. Logan NA, Berge O, Bishop AH, Busse HJ, De Vos P, Fritze D, Heyndrickx M, Kämpfer P, Rabinovitch L, Salkinoja-Salonen MS, Seldin L, Ventosa A (2009) Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59:2114–2121. https://doi.org/10.1099/ijs.0.013649-0

    Article  CAS  PubMed  Google Scholar 

  7. Krieg NR, Padgett PJ (2011) Phenotypic and physiological characterization methods. Methods Microbiol 38:15–60. https://doi.org/10.1016/B978-0-12-387730-7.00003-6

    Article  CAS  Google Scholar 

  8. Baker GC, Smith JJ, Cowan DA (2003) Review and reanalysis of domain-specifific 16S primers. J Microbiol Methods 55:541–555. https://doi.org/10.1016/j.mimet.2003.08.009

    Article  CAS  PubMed  Google Scholar 

  9. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Coil D, Jospin G, Darling AE (2015) A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 31:587–589. https://doi.org/10.1093/bioinformatics/btu661

    Article  CAS  PubMed  Google Scholar 

  11. Lee I, Ouk Kim Y, Park SC, Chun J (2016) OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103. https://doi.org/10.1099/ijsem.0.000760

    Article  CAS  PubMed  Google Scholar 

  12. Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286. https://doi.org/10.1007/s10482-017-0844-4

    Article  CAS  PubMed  Google Scholar 

  13. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60. https://doi.org/10.1186/1471-2105-14-60

    Article  Google Scholar 

  14. Parrello B, Butler R, Chlenski P, Olson R, Overbeek J, Pusch GD, Vonstein V, Overbeek R (2019) A machine learning-based service for estimating quality of genomes using PATRIC. BMC Bioinform 20:486. https://doi.org/10.1186/s12859-019-3068-y

    Article  Google Scholar 

  15. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P (2015) Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. https://doi.org/10.1101/gr.186072.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R, Butler RM, Chlenski P, Conrad N, Dickerman A, Dietrich EM, Gabbard JL, Gerdes S, Guard A, Kenyon RW, Machi D, Mao CH, Murphy-Olson D, Nguyen M, Nordberg EK, Olsen GJ, Olson RD, Overbeek JC, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomas C, VanOeffelen M, Vonstein V, Warren AS, Xia FF, Xie DW, Yoo H, Stevens R (2020) The PATRIC bioinformatics resource center: expanding data and analysis capabilities. Nucleic Acids Res 48:D606–D612. https://doi.org/10.1093/nar/gkz943

    Article  CAS  PubMed  Google Scholar 

  18. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:75

    Article  Google Scholar 

  19. Sasser M (1990) Identifification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Microbial ID Inc, Newark, DE, USA

    Google Scholar 

  20. Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207. https://doi.org/10.1016/S0580-9517(08)70410-0

    Article  CAS  Google Scholar 

  21. Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202. https://doi.org/10.1016/0378-1097(90)90282-U

    Article  CAS  Google Scholar 

  22. Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Microbiol 29:319–322. https://doi.org/10.2323/jgam.29.319

    Article  CAS  Google Scholar 

  23. Tak EJ, Kim HS, Lee JY, Kang W, Hyun DW, Kim PS, Shin NR, Bae JW (2017) Vagococcus martis sp. nov., isolated from the small intestine of a marten, Martes flavigula. Int J Syst Evol Microbiol 67:3398–3402. https://doi.org/10.1099/ijsem.0.002131

    Article  CAS  PubMed  Google Scholar 

  24. Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351. https://doi.org/10.1099/ijs.0.059774-0

    Article  PubMed  Google Scholar 

  25. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. https://doi.org/10.1099/ijs.0.64483-0

    Article  CAS  PubMed  Google Scholar 

  26. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131. https://doi.org/10.1073/pnas.0906412106

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, De Meyer S, Trujillo ME (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466. https://doi.org/10.1099/ijsem.0.002516

    Article  CAS  PubMed  Google Scholar 

  28. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44:846–849. https://doi.org/10.1099/00207713-44-4-846

    Article  CAS  Google Scholar 

  29. Li Q, Liu XM, Zhang HW, Chen SF (2019) Evolution and functional analysis of orf1 within nif gene cluster from Paenibacillus graminis RSA19. Int J Mol Sci 20:1145. https://doi.org/10.3390/ijms20051145

    Article  CAS  PubMed Central  Google Scholar 

  30. Hanin M, Jabbouri S, Quesada-Vincens D, Freiberg C, Perret X, ProméJ C, Broughton WJ, Fellay R (1997) Sulphation of Rhizobium sp. NGR234 Nod factors is dependent on noeE, a new host-specificity gene. Mol Microbiol 24:1119–1129

    Article  CAS  PubMed  Google Scholar 

  31. Delgado M J, Casella S, Bedmar E J (2007) Denitrification in Rhizobia-Legume Symbiosis. In: Bothe H, Ferguson S J, Newton W E (ed) Biology of the Nitrogen Cycle. Elsevier Science, pp 83–91. https://doi.org/https://doi.org/10.1016/B978-044452857-5.50007-2

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 31700003), “Academic Backbone” Project of Northeast Agricultural University (Grant No. 19XG15), Innovation Project of Hebei Academy of Agriculture and Forestry Sciences (2019-2-5 and 2019-1-4) and the Heilongjiang Postdoctoral Financial Assistance (Grant No. LBH-Z14042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The GenBank/ENA/DDBJ accession number for the 16S rRNA gene sequence of strain T1T is MT318143. The GenBank/ENA/DDBJ accession numbers for whole genome sequences of strain T1T and Paenibacillus sacheonensis DSM 23054T are JAAAMV000000000 and JAAAMU000000000, respectively.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 260 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Hu, D., Wang, Z. et al. Paenibacillus glycinis sp. nov., an Endophytic Bacterium Isolated from the Nodules of Soybean (Glycine max (L.) Merr). Curr Microbiol 78, 1678–1685 (2021). https://doi.org/10.1007/s00284-021-02403-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02403-1

Navigation