Skip to main content
Log in

Folding of an all-helical Greek-key protein monitored by quenched-flow hydrogen–deuterium exchange and NMR spectroscopy

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

To advance our understanding of the protein folding process, we use stopped-flow far-ultraviolet (far-UV) circular dichroism and quenched-flow hydrogen–deuterium exchange coupled with nuclear magnetic resonance (NMR) spectroscopy to monitor the formation of hydrogen-bonded secondary structure in the C-terminal domain of the Fas-associated death domain (Fadd-DD). The death domain superfamily fold consists of six α-helices arranged in a Greek-key topology, which is shared by the all-β-sheet immunoglobulin and mixed α/β-plait superfamilies. Fadd-DD is selected as our model death domain protein system because the structure of this protein has been solved by NMR spectroscopy, and both thermodynamic and kinetic analysis indicate it to be a stable, monomeric protein with a rapidly formed hydrophobic core. Stopped-flow far-UV circular dichroism spectroscopy revealed that the folding process was monophasic and the rate is 23.4 s−1. Twenty-two amide hydrogens in the backbone of the helices and two in the backbone of the loops were monitored, and the folding of all six helices was determined to be monophasic with rate constants between 19 and 22 s−1. These results indicate that the formation of secondary structure is largely cooperative and concomitant with the hydrophobic collapse. This study also provides unprecedented insight into the formation of secondary structure within the highly populated Greek-key fold more generally. Additional insights are gained by calculating the exchange rates of 23 residues from equilibrium hydrogen–deuterium exchange experiments. The majority of protected amide protons are found on helices 2, 4, and 5, which make up core structural elements of the Greek-key topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Fadd-DD:

C-terminal domain of the Fas-associated death domain

CARD:

Caspase recruitment domain

CD:

Circular dichroism

HSQC:

Heteronuclear single quantum coherence

DTT:

Dithiothreitol

HX:

Hydrogen–deuterium exchange

GndHCl:

Guanidine hydrochloride

MES:

2-(N-morpholino) ethanesulfonic acid

NMR:

Nuclear magnetic resonance

UV:

Ultraviolet

References

  • Bai Y (2006) Protein folding pathways studied by pulsed- and native-state hydrogen exchange. Chem Rev 106:1757–1768

    Article  PubMed  CAS  Google Scholar 

  • Bai Y, Milne JS, Mayne L, Englander SW (1993) Primary structure effects on peptide group hydrogen exchange. Proteins 17:75–86

    Article  PubMed  CAS  Google Scholar 

  • Berglund H, Olerenshaw D, Sankar A, Federwisch M, McDonald NQ, Driscoll PC (2000) The three-dimensional solution structure and dynamic properties of the human FADD death domain. J Mol Biol 302:171–188

    Article  PubMed  CAS  Google Scholar 

  • Carrington PE, Sandu C, Wei Y, Hill JM, Morisawa G, Huang T, Gavathiotis E, Wei Y, Werner MH (2006) The structure of FADD and its mode of interaction with procaspase-8. Mol Cell 22:599–610

    Article  PubMed  CAS  Google Scholar 

  • Chen YR, Clark AC (2003) Equilibrium and kinetic folding of an alpha-helical Greek key protein domain: caspase recruitment domain (CARD) of RICK. Biochemistry 42:6120–6310

    Google Scholar 

  • Chen YR, Clark AC (2004) Kinetic traps in the folding/unfolding of procaspase-1 CARD domain. Protein Sci 13:2196–2206

    Article  PubMed  CAS  Google Scholar 

  • Chen YR, Clark AC (2006) Substitutions of prolines examine their role in kinetic trap formation of the caspase recruitment domain (CARD) of RICK. Protein Sci 15:395–409

    Article  PubMed  CAS  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  PubMed  CAS  Google Scholar 

  • Di Paolo A, Balbeur D, De Pauw E, Redfield C, Matagne A (2010) Rapid collapse into a molten globule is followed by simple two-State kinetics in the folding of lysozyme from bacteriophage λ. Biochemistry 49:8646–8657

    Article  PubMed  CAS  Google Scholar 

  • Dyson HJ, Wright PE (1996) Insights into protein folding from NMR. Annu Rev Phys Chem 47:369–395

    Article  PubMed  CAS  Google Scholar 

  • Englander SW, Mayne L (1992) Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR. Annu Rev Biophys Biomol Struct 21:243–265

    Article  PubMed  CAS  Google Scholar 

  • Garcia C, Nishimura C, Cavagnero S, Dyson HJ, Wright PE (2000) Changes in the apomyoglobin folding pathway caused by mutation of the distal histidine residue. Biochemistry 39:11227–11237

    Article  PubMed  CAS  Google Scholar 

  • Greene LH, Lewis TE, Addou S, Cuff A, Dallman T, Dibley M, Redfern O, Pearl F, Nambudiry R, Reid A, Sillitoe I, Yeats C, Thornton JM, Orengo CA (2007) The CATH domain structure database: new protocols and classification levels give a more comprehensive resource for exploring evolution. Nucleic Acids Res 35:D291–D297

    Article  PubMed  CAS  Google Scholar 

  • Haglund E, Lind J, Oman T, Ohman A, Mäler L, Oliveberg M (2009) The HD-exchange motions of ribosomal protein S6 are insensitive to reversal of the protein-folding pathway. Proc Natl Acad Sci USA 106:21619–21624

    Article  PubMed  CAS  Google Scholar 

  • Higman VA, Greene LH (2006) Elucidation of conserved long-range interaction networks in proteins and their significance in determining protein topology. Physica A 368:595–606

    Article  CAS  Google Scholar 

  • Hsieh HC, Kumar TK, Sivaraman T, Yu C (2006) Refolding of a small all beta-sheet protein proceeds with accumulation of kinetic intermediates. Arch Biochem Biophys 447:147–154

    Article  PubMed  CAS  Google Scholar 

  • Jacobs MD, Fox RO (1994) Staphylococcal nuclease folding intermediate characterized by hydrogen exchange and NMR spectroscopy. Proc Natl Acad Sci USA 91:449–453

    Article  PubMed  CAS  Google Scholar 

  • Jeong EJ, Bang S, Lee TH, Park YI, Sim WS, Kim KS (1999) The solution structure of FADD death domain. Structural basis of death domain interactions of Fas and FADD. J Biol Chem 274:16337–16342

    Article  PubMed  CAS  Google Scholar 

  • Jones BE, Matthews CR (1995) Early intermediates in the folding of dihydrofolate reductase from Escherichia coli detected by hydrogen exchange and NMR. Protein Sci 4:167–177

    Article  PubMed  CAS  Google Scholar 

  • Krishna MM, Hoang L, Lin Y, Englander SW (2004) Hydrogen exchange methods to study protein folding. Methods 34:51–64

    Article  PubMed  CAS  Google Scholar 

  • Kuszewski J, Clore GM, Gronenborn AM (1994) Fast folding of a prototypic polypeptide: the immunoglobulin binding domain of streptococcal protein G. Protein Sci 3:1945–1952

    Article  PubMed  CAS  Google Scholar 

  • Kuwata K, Shastry R, Cheng H, Hoshino M, Batt CA, Goto Y, Roder H (2001) Structural and kinetic characterization of early folding events in beta-lactoglobulin. Nat Struct Biol 8:151–155

    Article  PubMed  CAS  Google Scholar 

  • Li H, Wojtaszek JL, Greene LH (2009) Analysis of conservation in the Fas-associated death domain protein and the importance of conserved tryptophans in structure, stability and folding. Biochim Biophys Acta 1794:583–593

    PubMed  CAS  Google Scholar 

  • Liu C, Gaspar JA, Wong HJ, Meiering EM (2002) Conserved and nonconserved features of the folding pathway of hisactophilin, a beta-trefoil protein. Protein Sci 11:669–679

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Dahlquist FW (1992) Detection and characterization of an early folding intermediate of T4 lysozyme using pulsed hydrogen exchange and two-dimensional NMR. Biochemistry 31:4749–4756

    Article  PubMed  CAS  Google Scholar 

  • Milam SL, Nicely NI, Feeney B, Mattos C, Clark AC (2007) Rapid folding and unfolding of Apaf-1 CARD. J Mol Biol 369:290–304

    Article  PubMed  CAS  Google Scholar 

  • Mullins LS, Pace CN, Raushel FM (1993) Investigation of ribonuclease T1 folding intermediates by hydrogen-deuterium amide exchange-two-dimensional NMR spectroscopy. Biochemistry 32:6152–6156

    Article  PubMed  CAS  Google Scholar 

  • Nabuurs SM, van Mierlo CP (2010) Interrupted hydrogen/deuterium exchange reveals the stable core of the remarkably helical molten globule of alpha-beta parallel protein flavodoxin. J Biol Chem 285:4165–4172

    Article  PubMed  CAS  Google Scholar 

  • Nölting B (2006) Protein folding kinetics: biophysical methods, 2nd edn. Springer-Verlag, Berlin Heidelberg, pp 1–4

    Google Scholar 

  • Park HH, Lo YC, Lin SC, Wang L, Yang JK, Wu H (2007) The death domain superfamily in intracellular signaling of apoptosis and inflammation. Annu Rev Immunol 25:561–586

    Article  PubMed  CAS  Google Scholar 

  • Parker MJ, Dempsey CE, Lorch M, Clarke AR (1997) Acquisition of native beta-strand topology during the rapid collapse phase of protein folding. Biochemistry 36:13396–13405

    Article  PubMed  CAS  Google Scholar 

  • Pérez JM, Renisio JG, Prompers JJ, van Platerink CJ, Cambillau C, Darbon H, Frenken LG (2001) Thermal unfolding of a llama antibody fragment: a two-state reversible process. Biochemistry 40:74–83

    Article  PubMed  Google Scholar 

  • Primrose WU (1993) Samples preparations. In: Roberts GCK (ed) NMR of macromolecules. Oxford University Press, Oxford, pp 7–34

    Google Scholar 

  • Radford SE, Dobson CM, Evans PA (1992) The folding of hen lysozyme involves partially structured intermediates and multiple pathways. Nature 358:302–307

    Article  PubMed  CAS  Google Scholar 

  • Rao PN, Reddy KS, Bhuyan AK (2009) Amyloid fibrillation of human Apaf-1 CARD. Biochemistry 48:7656–7664

    Article  PubMed  CAS  Google Scholar 

  • Roder H, Elöve GA, Englander SW (1988) Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and proton NMR. Nature 335:700–704

    Article  PubMed  CAS  Google Scholar 

  • Samuel D, Kumar TK, Balamurugan K, Lin WY, Chin DH, Yu C (2001) Structural events during the refolding of an all beta-sheet protein. J Biol Chem 276:4134–4141

    Article  PubMed  CAS  Google Scholar 

  • Sasakawa H, Tamura A, Fujimaki S, Taguchi S, Akasaka K (1999) Secondary structures and structural fluctuation in a dimeric protein, Streptomyces subtilisin inhibitor. J Biochem 126:859–865

    PubMed  CAS  Google Scholar 

  • Schulenburg C, Löw C, Weininger U, Mrestani-Klaus C, Hofmann H, Balbach J, Ulbrich-Hofmann R, Arnold U (2009) The folding pathway of onconase is directed by a conserved intermediate. Biochemistry 48:8449–8457

    Article  PubMed  CAS  Google Scholar 

  • Steward A, McDowell GS, Clarke J (2009) Topology is the principal determinant in the folding of a complex all-alpha Greek key death domain from human FADD. J Mol Biol 389:425–437

    Article  PubMed  CAS  Google Scholar 

  • Teilum K, Kragelund BB, Knudsen J, Poulsen FM (2000) Formation of hydrogen bonds precedes the rate-limiting formation of persistent structure in the folding of ACBP. J Mol Biol 301:1307–1314

    Article  PubMed  CAS  Google Scholar 

  • Udgaonkar JB, Baldwin RL (1988) NMR evidence for an early framework intermediate on the folding pathway of ribonuclease A. Nature 335:694–699

    Article  PubMed  CAS  Google Scholar 

  • Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AGW, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Cryst D67:235–242

    Google Scholar 

Download references

Acknowledgments

We express our sincere thanks to Professor Paul Driscoll (University College London) for donation of complementary DNA (cDNA) encoding Fadd-DD, and to John Sonewald (Bio-Logic USA) for technical assistance with the quenched-flow studies. We are grateful to Susan Hatcher (COSMIC Facility, Old Dominion University) for the NMR time. The research was supported by a Jeffress Research Grant (J-889) from the Thomas and Kate Miller Jeffress Memorial Trust and funding from the Old Dominion University Office of Research (to L.H.G.) and an Old Dominion University Graduate Student Fellowship (to H.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesley H. Greene.

Additional information

L. H. Greene and H. Li contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 219 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greene, L.H., Li, H., Zhong, J. et al. Folding of an all-helical Greek-key protein monitored by quenched-flow hydrogen–deuterium exchange and NMR spectroscopy. Eur Biophys J 41, 41–51 (2012). https://doi.org/10.1007/s00249-011-0756-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-011-0756-6

Keywords

Navigation