Skip to main content
Log in

Transient analysis of sub-critical evaporation of fuel droplet in non-isothermal stagnant gaseous mixtures: effects of radiation and thermal expansion

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Transient sub-critical droplet evaporation in non-isothermal stagnant gaseous mixtures taking into account the effects of radiation, liquid volumetric expansion and droplet heating is investigated numerically. We obtained equations for Stefan velocity and the rate of change of the droplet radius taking into account liquid volumetric expansion, and derived the boundary conditions taking into account the effect of liquid thermal expansion. It is shown that in the case of sub-critical evaporation neglecting the liquid volumetric expansion causes underestimation of the evaporation rate at the initial stage and overestimation of the evaporation rate at the final stage of droplet evaporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. In general the Equations (4) are introduced for allj=1,...,K. However, only K − 1 of the quantities D j can be specified independently. Thus the K-th species can be treated differently from the others and may be found consistently using the following identity \(\sum\nolimits_{j = 1}^K {Y_j }=1\)

Abbreviations

c p :

Specific heat at a constant pressure

c :

Sound velocity

D d :

Droplet diameter

D j :

Diffusion coefficient of j-th species

D jk :

Binary diffusion coefficient

k :

Thermal conductivity

K V :

Evaporation constant

\( \hbox{Kn}= \frac{\lambda}{R}\) :

Knudsen number

L :

latent heat of evaporation

Le:

Lewis number

M j :

Molecular weight of j-th species

m :

Mass of the droplet

\(\ifmmode\expandafter\dot\else\expandafter\.\fi{m}\) :

Droplet vaporization rate

p :

Pressure

q R :

Radiation flux vector

r :

Radial coordinate

R :

Radius of the droplet

R g :

Universal gas constant

T :

Temperature

t :

Time

t D :

Diffusion relaxation time

t T :

Thermal relaxation time

u, \( v \) :

Velocity

x :

\(= \frac{r}{{R{\left(t \right)}}}\)

X j :

Mole fraction of the j-th species

Y j :

Mass fraction of the j-th species

α :

Liquid thermal diffusivity

ζT :

\(= \frac{1}{{\alpha _{\ell} \rho c_{p}}}\)

ζD :

T c p

η:

Coefficient of thermal expansion

θ:

\(= \frac{T}{{T_{\infty}}}\)

λ:

Mean free path of the molecules

ξ:

\(= \frac{{R{\left(t \right)}}}{{R_{0}}}\)

τ:

\(= \frac{{\alpha _{{\ell}} t}}{{R^{2}_{0}}}\)

1:

Volatile species

e :

Value outside a droplet

i :

Value inside a droplet

j :

Number of a species (1-st is the volatile species)

ℓ:

Liquid

s:

Value at the droplet surface

∞:

Value at infinity

References

  1. Godsave GAE (1953) Studies of the combustion of drops in a fuel spray—the burning of single drops of fuel. In: Fourth symposium (international) on combustion. Williams & Wilkins, Baltimore, pp 818–830

  2. Spalding DB (1953) The combustion of liquid fuels. In: Fourth symposium (international) on combustion. Williams & Wilkins, Baltimore, pp 847–864

  3. Kent JC (1973) Quasi-steady diffusion controlled droplet evaporation and condensation. Appl Sci Res 28(4–5):315–359

    Google Scholar 

  4. Abramzon BW, Sirignano A (1989) Droplet vaporization model for spray combustion calculations. Int J Heat Mass Transfer 32:1605–1618

    Article  Google Scholar 

  5. Yalamov YI, Uvarova LA, Shchukin ER (1979) Analysis of asymmetric evaporation of large irradiated particles in the diffusion approximation. Soviet Phys, Tech Phys 24(6):727–730

    Google Scholar 

  6. Shchukin ER, Yalamov YI, Krasovitov BG (1991) Evaporation of single droplets with small gradients of concentration of the carrying component. Soviet Phys J 7:128

    Google Scholar 

  7. Elperin T, Krasovitov B (1995) Radiation, thermal diffusion and kinetic effects in evaporation and combustion of large and moderate size fuel droplets. Int J Heat Mass Transfer 38:409–418

    Article  MATH  Google Scholar 

  8. Nadykto B, Shchukin ER, Kulmala M, Lehtinen KEJ, Laaksonen A (2003) Evaporation and condensational growth of liquid droplets in nonisothermal gas mixtures. Aerosol Sci Technol 37:315–324

    Article  Google Scholar 

  9. Chiu HH (2000) Advances and challenges in droplet and spray combustion. I. Toward a unified theory of droplet aerothermochemistry. Prog Energy Combust Sci 26:381–416

    Article  Google Scholar 

  10. Hubbard GL, Denny VE, Mills AF (1975) Droplet evaporation: effect of transient and variable properties. Int J Heat Mass Transfer 18:1003–1008

    Article  Google Scholar 

  11. Ben-Dor G, Elperin T, Krasovitov B (2003). Numerical analysis of temperature and concentration jumps on transient evaporation of moderately large (0.01≲Kn≲0.3) droplets in non-isothermal multicomponent gaseous mixtures. Heat Mass Transfer 39:157–166

    Google Scholar 

  12. Ben-Dor G, Elperin T, Krasovitov B, (2003) Effect of thermo- and diffusiophoretic motion of flame-generated particles in the neighbourhood of burning droplets in microgravity conditions. Proc R Soc Lond A, 459:677–703

    Google Scholar 

  13. Saitoh T, Nagano O (1984) Transient and variable property analysis for droplet evaporation. In: Technology reports, Tohoky University, 49(1):29–43

  14. Sirignano WA (1993) Fluid dynamics of sprays. J Fluids Eng 115:345–378

    Article  Google Scholar 

  15. Law CK (1982) Recent advances in droplet vaporization and combustion. Prog Energy Combust Sci 8:171–201

    Article  Google Scholar 

  16. Gilver SD, Abraham J (1996) Supercritical droplet vaporization and combustion studies. Prog Energy Combust Sci 22:1–28

    Article  Google Scholar 

  17. Matlosz RL, Leipziger S, Torda TP (1972) Investigation of liquid drop evaporation in high temperature and high pressure environment. Int J Heat Mass Transfer 15:831–852

    Article  Google Scholar 

  18. Poplow F (1994) Numerical calculation of the transition from subcritical droplet evaporation to supercritical diffusion. Int J Heat Mass Transfer 37:485–492

    Article  MATH  Google Scholar 

  19. Gogos G, Soh S, Pope DN (2003) Effects of gravity and ambient pressure on liquid fuel droplet evaporation. Int J Heat Mass Transfer 46:283–296

    Article  MATH  Google Scholar 

  20. Lage PLC, Hackenberg CM, Rangel RH, (1995) Nonideal vaporization of dilating binary droplets with radiation absorption. Combust Flame 101:36–44

    Article  Google Scholar 

  21. Hsieh KC, Shuen JS, Yang V (1991) Droplet vaporization in high pressure environments 1: near critical conditions. Combust Sci Technol 76:111–132

    Article  Google Scholar 

  22. Megaridis CM (1993) Liquid-phase variable propertiy effects in multicomponent droplet convective evaporation. Combust Sci Technol 92:291–311

    Article  Google Scholar 

  23. Delplanque JP, Sirignano WA (1993) Numerical study of the transient vaporization of an oxygen droplet at sub- and super-critical conditions. Int J Heat Mass Transfer 36:303–314

    Article  MATH  Google Scholar 

  24. Consolini L, Aggarwal SK, Murad S, (2003) A molecular dynamics simulation of droplet evaporation. Int J Heat Mass Transfer 46:3179–3188

    Article  MATH  Google Scholar 

  25. Harstad K, Bellan J (2000) An all-pressure fluid drop model applied to a binary mixture: heptane in nitrogen. Int J Multiphase Flow 26:1675–1706

    Article  MATH  Google Scholar 

  26. Landau LD, Lifshitz EM (1987) Fluid mechanics, 2nd edn. Volume 6 of course of theoretical physics. Butterworth-Heinemann, Oxford

  27. Perry RH, Green DW (1997) Perry’s chemical engineers’ handbook, 7th edn. McGraw-Hill, New York

    Google Scholar 

  28. Reid RC, Prausnitz JM, Poling BE (1987) The properties of gases and liquids, 4th edn. McGraw-Hill, New York

    Google Scholar 

  29. Glassman I (1987) Combustion, 2nd edn. Academic Press, London

    Google Scholar 

  30. Sincovec RF, Madsen NK (1975) Software for nonlinear partial differential equations. ACM Trans Math Soft 1:232–260

    Article  MATH  Google Scholar 

  31. Vargaftik NB (1975) Tables on the thermophysical properties of liquids and gases, 2nd edn. Halsted Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Elperin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elperin, T., Krasovitov, B. Transient analysis of sub-critical evaporation of fuel droplet in non-isothermal stagnant gaseous mixtures: effects of radiation and thermal expansion. Heat Mass Transfer 42, 427–436 (2006). https://doi.org/10.1007/s00231-005-0028-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-005-0028-z

Keywords

Navigation