Skip to main content
Log in

A generalization of the Saint-Venant’s principle for an elastic body with dipolar structure

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This study is concerned with the linear elasticity theory for bodies with a dipolar structure. In this context, we approach transient elastic processes and the steady state in a cylinder consisting of such kind of body which is only subjected to some boundary restrictions at a plane end. We will show that at a certain distance \(d=d(t)\), which can be calculated, from the loaded plan, the deformation of the body vanishes. For the points of the cylinder located at a distance less than d, we will use an appropriate measure to assess the decreasing of the deformation relative to the distance from the loaded plane end. The fact that the measure, that assess the deformation, decays with respect to the distance at the loaded end is the essence of the principle of Saint-Venant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gurtin, M.E.: The linear theory of elasticity. In: Truesdell, C. (ed.) Handbuch der Physik, vol. VIa/2. Springer, New York (1972)

    Google Scholar 

  2. Edelstein, W.S.: A spatial decay estimate for the heat equation. Z. Angew. Math. Phys. 20, 900–905 (1969)

    Article  MathSciNet  Google Scholar 

  3. Knowles, J.K.: On Saint-Venant’s principle in the two-dimensional linear theory of elasticity. Arch. Ration. Mech. Anal. 21, 1–22 (1966)

    Article  MathSciNet  Google Scholar 

  4. Toupin, R.A.: Saint-Venant’s principle. Arch. Ration. Mech. Anal. 18, 83–96 (1965)

    Article  MathSciNet  Google Scholar 

  5. Horgan, C.O.: Recent developments concerning Saint-Venant’s principle: an update. Appl. Mech. Rev. 42(11), 295–303 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  6. Karp, D., Durban, D.: Saint-Venant’s principle in dynamics of structure. Appl. Mech. Rev. 64(2), 020801-020801-20 (2011)

    Article  ADS  Google Scholar 

  7. Knowles, J.K.: On the spatial decay of solutions of the heat equation. Z. Angew. Math. Phys. 22, 1050–1056 (1971)

    Article  MathSciNet  Google Scholar 

  8. Ericksen, J.L.: Uniformity in shells. Arch. Ration. Mech. Anal. 37, 73–84 (1970)

    Article  MathSciNet  Google Scholar 

  9. Chirita, S.: On the spatial decay estimates in certain time-dependent problems of continuum mechanics. Arch. Mech. 47, 755–771 (1995)

    MathSciNet  MATH  Google Scholar 

  10. Horgan, C.O., Payne, L.E., Wheeler, L.T.: Spatial decay estimates in transient heat conduction. Q. Appl. Math. 42, 119–127 (1984)

    Article  MathSciNet  Google Scholar 

  11. Nunziato, J.W.: On the spatial decay of solutions in the nonlinear theory of heat conduction. J. Math. Anal. Appl. 48, 687–698 (1974)

    Article  MathSciNet  Google Scholar 

  12. Chirita, S.: Spatial decay estimates for solutions describing harmonic vibrations in a thermoelastic cylinder. J. Therm. Stresses 18, 421–436 (1995)

    Article  MathSciNet  Google Scholar 

  13. Iesan, D., Quintanilla, R.: Decay estimates and energy bounds for porous elastic cylinders. Z. Angew. Math. Phys. 46, 268–281 (1995)

    Article  MathSciNet  Google Scholar 

  14. Flavin, J.N., Knops, R.J.: Some spatial decay estimates in continuum dynamics. J. Elast. 17, 249–264 (1987)

    Article  MathSciNet  Google Scholar 

  15. Flavin, J.N., Knops, R.J., Payne, L.E.: Energy bounds in dynamical problems for a semi-infinite elastic beam. In: Eason, G., Ogden, R.W. (eds.) Elasticity: Mathematical Methods and Applications, pp. 101–111. Ellis-Horwood, Chichester (1990)

    Google Scholar 

  16. Chirita, S., Quintanilla, R.: On Saint-Venant’s principle in linear elastodynamics. J. Elast. 42, 201–215 (1996)

    Article  MathSciNet  Google Scholar 

  17. Chirita, S.: On Saint-Venant’s principle in dynamic viscoelasticity. Q. Appl. Math. 55(1), 139–149 (1997)

    Article  MathSciNet  Google Scholar 

  18. Eringen, A.C.: Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28, 1291–1301 (1990)

    Article  Google Scholar 

  19. Eringen, A.C.: Microcontinuum Field Theory. Foundations and Solids, vol. I. Springer, New York (1999)

    Book  Google Scholar 

  20. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  Google Scholar 

  21. Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113–147 (1964)

    Article  MathSciNet  Google Scholar 

  22. Fried, E., Gurtin, M.E.: Thermomechanics of the interface between a body and its environment. Contin. Mech. Therm. 19(5), 253–271 (2007)

    Article  MathSciNet  Google Scholar 

  23. Iesan, D., Quintanilla, R.: On Saint-Venant’s principle for microstretch elastic bodies. Int. J. Eng. Sci. 35(14), 1277–1290 (1997)

    Article  MathSciNet  Google Scholar 

  24. Othman, M.I.A., Marin, M.: Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory. Results Phys. 7, 3863–3872 (2017)

    Article  ADS  Google Scholar 

  25. Marin, M., Öchsner, A.: The effect of a dipolar structure on the Holder stability in Green–Naghdi thermoelasticity. Contin. Mech. Therm. 30(2), 267–278 (2018)

    Article  Google Scholar 

  26. Marin, M., Craciun, E.M.: Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials. Compos. B Eng. 126, 27–37 (2017)

    Article  Google Scholar 

  27. Hassan, M., Marin, M., Ellahi, R., Alamri, S.Z.: Exploration of convective heat transfer and flow characteristics synthesis by Cu-Ag/Water hybrid-nanofluids. Heat Transf. Res. 49(18), 1837–1848 (2018)

    Article  Google Scholar 

  28. Marin, M., Nicaise, S.: Existence and stability results for thermoelastic dipolar bodies with double porosity. Contin. Mech. Therm. 28(6), 1645–1657 (2016)

    Article  MathSciNet  Google Scholar 

  29. Marin, M., Ellahi, R., Chirila, A.: On solutions of Saint-Venant’s problem for elastic dipolar bodies with voids. Carpathian J. Math. 33(2), 219–232 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Mehrabadi, M.M., Cowin, S.C., Horgan, C.O.: Strain energy density bounds for linear anisotropic elastic materials. J. Elast. 30, 191–196 (1993)

    Article  MathSciNet  Google Scholar 

  31. Marin, M., Öchsner, A.: Complements of Higher Mathematics. Springer, New York (2018)

    Book  Google Scholar 

  32. Marin, M., Öchsner, A., Radulescu, V.: A polynomial way to control the decay of solutions for dipolar bodies. Contin. Mech. Therm. 31(1), 331–340 (2019)

    Article  MathSciNet  Google Scholar 

  33. Marin, M., Öchsner, A.: Propagation of a straight crack in dipolar elastic bodies. Contin. Mech. Therm. 30(4), 775–782 (2018)

    Article  MathSciNet  Google Scholar 

  34. Marin, M., Öchsner, A.: An initial boundary value problem for modeling a piezoelectric dipolar body. Contin. Mech. Therm. 30(2), 267–278 (2018)

    Article  MathSciNet  Google Scholar 

  35. Ellahi, R., Hassan, M., Zeeshan, A.: A study of heat transfer in power law nanofluid. Therm. Sci. 20(6), 2015–2026 (2016)

    Article  Google Scholar 

  36. Bhatti, M.M., Zeeshan, A., Ellahi, R., Ijaz, N.: Heat and mass transfer of two-phase flow with electric double layer effects induced due to peristaltic propulsion in the presence of transverse magnetic field. J. Mol. Liq. 230, 237–246 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marin Marin.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marin, M., Öchsner, A. & Craciun, E.M. A generalization of the Saint-Venant’s principle for an elastic body with dipolar structure. Continuum Mech. Thermodyn. 32, 269–278 (2020). https://doi.org/10.1007/s00161-019-00827-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-019-00827-6

Keywords

Navigation