Skip to main content

Advertisement

Log in

Kinematische Untersuchungen des muskuloskelettalen Systems

Nutzung von Bild- und Bildfolgenanalysen sowie Form- und Bewegungsmodellen

Kinematic examination of the musculoskeletal system

Use of methods of image and image sequence analyses as well as shape and motion models

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Die bildbasierte präoperative Planung ist mittlerweile fester Bestandteil vor Operationen am muskuloskelettalen System und im Falle von endoprothetischen Eingriffen obligat. Zunehmend gibt es Ansätze, zusätzliche computerbasierte kinematische Untersuchungen durchzuführen und hierbei auch dynamische Bildanalysen zu generieren. Der Artikel beschreibt verschiedene dieser neuen Untersuchungstechniken und zeigt ihre klinische Relevanz auf.

Abstract

Image-based preoperative planning has become a routine component in surgery on the musculoskeletal system. In joint arthroplasty it is obligatory. Surgeons are increasingly considering new approaches with additional computer-based kinematic examinations that also generate dynamic image analyses. This article describes several of these new examination techniques and discusses their clinical relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Abbreviations

FAI:

Femoroazetabuläres Impingement

Literatur

  1. Mainard D, Barbier O, Knafo Y, Belleville R, Mainard-Simard L, Gross JB (2017) Accuracy and reproducibility of preoperative three-dimensional planning for total hip arthroplasty using biplanar low-dose radiographs: a pilot study. Orthop Traumatol Surg Res 103(4):531–536

    Article  CAS  Google Scholar 

  2. Wright AA, Naze GS, Kavchak AE, Paul D, Kenison B, Hegedus EJ (2015) Radiological variables associated with progression of femoroacetabular impingement of the hip: a systematic review. J Sci Med Sport 18(2):122–127

    Article  Google Scholar 

  3. Bedi A, Dolan M, Hetsroni I, Magennis E, Lipman J, Buly R et al (2011) Surgical treatment of femoroacetabular impingement improves hip kinematics: a computer-assisted model. Am J Sports Med 39(Suppl):43S–49S

    Article  Google Scholar 

  4. Tannast M, Kubiak-Langer M, Langlotz F, Puls M, Murphy SB, Siebenrock KA (2007) Noninvasive three-dimensional assessment of femoroacetabular impingement. J Orthop Res 25(1):122–131

    Article  Google Scholar 

  5. Komistek RD, Dennis DA, Mahfouz M (2003) In vivo fluoroscopic analysis of the normal human knee. Clin Orthop Relat Res 410:69–81

    Article  Google Scholar 

  6. Sarojak ME (1998) Model-fit: An interactive pose determining system. Engineering Thesis. Golden, CO, Colorado School of Mines

    Google Scholar 

  7. Wassilew GI, Janz V, Heller MO, Tohtz S, Rogalla P, Hein P et al (2013) Real time visualization of femoroacetabular impingement and subluxation using 320-slice computed tomography. J Orthop Res 31(2):275–281

    Article  Google Scholar 

  8. Kakar S, Breighner RE, Leng S, McCollough CH, Moran SL, Berger RA et al (2016) The role of dynamic (4D) CT in the detection of scapholunate ligament injury. J Wrist Surg 5(4):306–310

    Article  Google Scholar 

  9. Tersi L, Barre A, Fantozzi S, Stagni R (2013) In vitro quantification of the performance of model-based mono-planar and bi-planar fluoroscopy for 3D joint kinematics estimation. Med Biol Eng Comput 51(3):257–265

    Article  Google Scholar 

  10. D’Isidoro F, Eschle P, Zumbrunn T, Sommer C, Scheidegger S, Ferguson SJ (2017) Determining 3D kinematics of the hip using video fluoroscopy: guidelines for balancing radiation dose and registration accuracy. J Arthroplasty 32(10):3213–3218

    Article  Google Scholar 

  11. Guenoun B, Zadegan F, Aim F, Hannouche D, Nizard R (2012) Reliability of a new method for lower-extremity measurements based on stereoradiographic three-dimensional reconstruction. Orthop Traumatol Surg Res 98(5):506–513

    Article  CAS  Google Scholar 

  12. Chuang BI, Hsu JH, Kuo LC, Jou IM, Su FC, Sun YN (2017) Tendon-motion tracking in an ultrasound image sequence using optical-flow-based block matching. Biomed Eng Online 16(1):47

    Article  Google Scholar 

  13. Lofstedt T, Ahnlund O, Peolsson M, Trygg J (2012) Dynamic ultrasound imaging—a multivariate approach for the analysis and comparison of time-dependent musculoskeletal movements. BMC Med Imaging 12:29

    Article  Google Scholar 

  14. Huang Q, Zeng Z (2017) A review on real-time 3D ultrasound imaging technology. Biomed Res Int. https://doi.org/10.1155/2017/6027029

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wallny TA, Schild RL, Schulze Bertelsbeck D, Hansmann ME, Kraft CN (2001) Three-dimensional ultrasonography in the diagnosis of rotator cuff lesions. Ultrasound Med Biol 27(6):745–749

    Article  CAS  Google Scholar 

  16. Mazzoli V, Schoormans J, Froeling M, Sprengers AM, Coolen BF, Verdonschot N et al (2017) Accelerated 4D self-gated MRI of tibiofemoral kinematics. NMR Biomed. https://doi.org/10.1002/nbm.3791

    Article  PubMed  Google Scholar 

  17. Pham DD, Morariu CA, Terheiden T, Warwas S, Landgraeber S, Jäger MPJ (2018) Polar appearance models—A fully automatic approach for femoral model initialization in MRI. IEEE 15th International Symposium on Biomedical Imaging (ISBI), Washington D.C.

    Book  Google Scholar 

  18. Huang H, Xiang C, Zeng C, Ouyang H, Wong KK, Huang W (2015) Patient-specific geometrical modeling of orthopedic structures with high efficiency and accuracy for finite element modeling and 3D printing. Australas Phys Eng Sci Med 38(4):743–753

    Article  Google Scholar 

  19. Camomilla V, Cereatti A, Cutti AG, Fantozzi S, Stagni R, Vannozzi G (2017) Methodological factors affecting joint moments estimation in clinical gait analysis: a systematic review. Biomed Eng Online 16(1):106

    Article  Google Scholar 

  20. Leardini A, Chiari L, Croce DU, Cappozzo A (2005) Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation. Gait Posture 21(2):212–225

    Article  Google Scholar 

  21. Croce DU, Leardini A, Chiari L, Cappozzo A (2005) Human movement analysis using stereophotogrammetry. Part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics. Gait Posture 21(2):226–237

    Article  Google Scholar 

  22. Sreenivasa M, Chamorro CJG, Gonzalez-Alvarado D, Rettig O, Wolf SI (2016) Patient-specific bone geometry and segment inertia from MRI images for model-based analysis of pathological gait. J Biomech 49(9):1918–1925

    Article  Google Scholar 

  23. Landgraeber S, Cichon R, Raab D, Jäger M, Kowalczyk W (2015) Evaluation des femoracetabulären Impingements mittels kombinierter Bewegungsanalyse und MRT. Meeting Abstract (WI56-1025)

  24. Jia R, Mellon S, Monk P, Murray D, Noble JA (2016) A computer-aided tracking and motion analysis with ultrasound (CAT & MAUS) system for the description of hip joint kinematics. Int J Comput Assist Radiol Surg 11(11):1965–1977

    Article  Google Scholar 

  25. Chincisan A, Tecante K, Becker M, Magnenat-Thalmann N, Hurschler C, Choi HF (2016) A computational approach to calculate personalized pennation angle based on MRI: effect on motion analysis. Int J Comput Assist Radiol Surg 11(5):683–693

    Article  Google Scholar 

Download references

Danksagung

Die Abbildungen wurden dankenswerterweise von Hr. Cosmin Adrian Morariu, Hr. Duc Duy Pham und Hr. Tobias Terheiden zur Verfügung gestellt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Landgraeber.

Ethics declarations

Interessenkonflikt

S. Landgraeber und J. Pauli geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landgraeber, S., Pauli, J. Kinematische Untersuchungen des muskuloskelettalen Systems. Orthopäde 47, 834–841 (2018). https://doi.org/10.1007/s00132-018-3599-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-018-3599-3

Schlüsselwörter

Keywords

Navigation