Skip to main content

Advertisement

Log in

Diffusion Tensor Imaging of Dystrophic Skeletal Muscle

Comparison of Two Segmentation Methods Adapted to Chemical-shift-encoded Water-fat MRI

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

To compare the influence of two different regions of interest (ROIs) on diffusion tensor metrics in dystrophic thigh muscles using a custom-made (whole muscle) ROI including and a selective ROI excluding areas of fatty replacement.

Methods

Diffusion tensor imaging (DTI) and chemical-shift-encoded water-fat magnetic resonance imaging (MRI) of the thigh was conducted on a 3-Tesla system in 15 cases with muscular dystrophy and controls. The ROIs were chosen according to patterns of fatty replacement on co-registered axial DTI and gradient echo sequence (GRE) images. Fractional anisotropy (FA), apparent diffusion coefficient (ADC), fiber track length (FTL), and muscle fat fractions (MFF) were compared between both ROI segmentations. These comparisons, muscle-specific correlation coefficients, and the influence of ROI localization on tensor metrics were derived based on linear mixed effects regression models.

Results

In the cases a high correlation was observed for ADC and FA with MFF using a custom ROI. The correlation was weaker but still significant with a selective ROI method. Using the custom ROI, FTL correlated significantly with MFF in 3 out of 4 muscles (r ≤ −0.51). A correlation was not found for the selective ROI method. Interaction analysis revealed that the association of ADC and FA with MFF was not significantly influenced by the ROI localization. For FTL the ROI localization significantly reduced the negative association with MFF.

Conclusion

The DTI metrics and FTL of custom ROI segmentation are significantly influenced by MFF. Contrary to ADC and FA, the effect of MFF on FTL is significantly reduced when applying selective ROI segmentation, which could therefore be a better option for MR tractography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

BF:

Biceps femoris muscle

DTI:

Diffusion tensor imaging

EPI:

Echo planar imaging

FA:

Fractional anisotropy

FTL:

Fiber track length

G:

Gracilis muscle

GRE:

Gradient echo sequence

MFF:

Muscle fat fraction

NSA:

Number of signal averages

RF:

Rectus femoris muscle

ROI:

Region of interest

SNR:

Signal-to-noise ratio

ST:

Semitendinosus muscle

References

  1. Ward SR, Winters TM, Blemker SS. The architectural design of the gluteal muscle group: implications for movement and rehabilitation. J Orthop Sports Phys Ther. 2010;40:95–102.

    Article  Google Scholar 

  2. Bodine SC, Roy RR, Meadows DA, Zernicke RF, Sacks RD, Fournier M, Edgerton VR. Architectural, histochemical, and contractile characteristics of a unique biarticular muscle: the cat semitendinosus. J Neurophysiol. 1982;48:192–201.

    Article  CAS  Google Scholar 

  3. Burkholder TJ, Fingado B, Baron S, Lieber RL. Relationship between muscle fiber types and sizes and muscle architectural properties in the mouse hindlimb. J Morphol. 1994;221:177–90.

    Article  CAS  Google Scholar 

  4. Oudeman J, Nederveen AJ, Strijkers GJ, Maas M, Luijten PR, Froeling M. Techniques and applications of skeletal muscle diffusion tensor imaging: a review. J Magn Reson Imaging. 2016;43:773–88.

    Article  Google Scholar 

  5. Ahmad CS, Redler LH, Ciccotti MG, Maffulli N, Longo UG, Bradley J. Evaluation and management of hamstring injuries. Am J Sports Med. 2013;41:2933–47.

    Article  Google Scholar 

  6. Basser PJ, Jones DK. Diffusion-tensor MRI: theory, experimental design and data analysis—a technical review. NMR Biomed. 2002;15:456–67.

    Article  Google Scholar 

  7. Galbán CJ, Maderwald S, Stock F, Ladd ME. Age-related changes in skeletal muscle as detected by diffusion tensor magnetic resonance imaging. J Gerontol A Biol Sci Med Sci. 2007;62:453–8.

    Article  Google Scholar 

  8. Galbán CJ, Maderwald S, Uffmann K, Ladd ME. A diffusion tensor imaging analysis of gender differences in water diffusivity within human skeletal muscle. NMR Biomed. 2005;18:489–98.

    Article  Google Scholar 

  9. Ponrartana S, Ramos-Platt L, Wren TA, Hu HH, Perkins TG, Chia JM, Gilsanz V. Effectiveness of diffusion tensor imaging in assessing disease severity in Duchenne muscular dystrophy: preliminary study. Pediatr Radiol. 2015;45:582–9.

    Article  Google Scholar 

  10. Saotome T, Sekino M, Eto F, Ueno S. Evaluation of diffusional anisotropy and microscopic structure in skeletal muscles using magnetic resonance. Magn Reson Imaging. 2006;24:19–25.

    Article  Google Scholar 

  11. Sinha S, Sinha U, Edgerton VR. In vivo diffusion tensor imaging of the human calf muscle. J Magn Reson Imaging. 2006;24:182–90.

    Article  Google Scholar 

  12. Damon BM, Ding Z, Anderson AW, Freyer AS, Gore JC. Validation of diffusion tensor MRI-based muscle fiber tracking. Magn Reson Med. 2002;48:97–104.

    Article  Google Scholar 

  13. Mori S, van Zijl PC. Fiber tracking: principles and strategies—a technical review. NMR Biomed. 2002;15:468–80.

    Article  Google Scholar 

  14. Froeling M, Nederveen AJ, Nicolay K, Strijkers GJ. DTI of human skeletal muscle: the effects of diffusion encoding parameters, signal-to-noise ratio and T2 on tensor indices and fiber tracts. NMR Biomed. 2013;26:1339–52.

    Article  Google Scholar 

  15. Hooijmans MT, Damon BM, Froeling M, Versluis MJ, Burakiewicz J, Verschuuren JJ, Niks EH, Webb AG, Kan HE. Evaluation of skeletal muscle DTI in patients with duchenne muscular dystrophy. NMR Biomed. 2015;28:1589–97.

    Article  CAS  Google Scholar 

  16. Williams SE, Heemskerk AM, Welch EB, Li K, Damon BM, Park JH. Quantitative effects of inclusion of fat on muscle diffusion tensor MRI measurements. J Magn Reson Imaging. 2013;38:1292–7.

    Article  Google Scholar 

  17. Gaeta M, Scribano E, Mileto A, Mazziotti S, Rodolico C, Toscano A, Settineri N, Ascenti G, Blandino A. Muscle fat fraction in neuromuscular disorders: dual-echo dual-flip-angle spoiled gradient-recalled MR imaging technique for quantification—a feasibility study. Radiology. 2011;259:487–94.

    Article  Google Scholar 

  18. Dixon WT. Simple proton spectroscopic imaging. Radiology. 1984;153:189–94.

    Article  CAS  Google Scholar 

  19. Hooijmans MT, Niks EH, Burakiewicz J, Anastasopoulos C, van den Berg SI, van Zwet E, Webb AG, Verschuuren JJGM, Kan HE. Non-uniform muscle fat replacement along the proximodistal axis in Duchenne muscular dystrophy. Neuromuscul Disord. 2017;27:458–64.

    Article  CAS  Google Scholar 

  20. Díaz-Manera J, Llauger J, Gallardo E, Illa I. Muscle MRI in muscular dystrophies. Acta Myol. 2015;34:95–108.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Eggers H, Brendel B, Duijndam A, Herigault G. Dual-echo Dixon imaging with flexible choice of echo times. Magn Reson Med. 2011;65:96–107.

    Article  Google Scholar 

  22. Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999;45:265–9.

    Article  CAS  Google Scholar 

  23. Mori S, Kaufmann WE, Davatzikos C, Stieltjes B, Amodei L, Fredericksen K, Pearlson GD, Melhem ER, Solaiyappan M, Raymond GV, Moser HW, van Zijl PC. Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking. Magn Reson Med. 2002;47:215–23.

    Article  Google Scholar 

  24. Ma J. Dixon techniques for water and fat imaging. J Magn Reson Imaging. 2008;28:543–58.

    Article  Google Scholar 

  25. R Development Core Team. A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2016.

    Google Scholar 

  26. Gamer M, Lemon J, Fellows I, Singh P. irr: various coefficients of interrater reliability and agreement. R package version 0.84. 16.07.2012 http://CRAN.R-project.org/package=irr. Accessed: 16.07.2012

    Google Scholar 

  27. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.

    Article  Google Scholar 

  28. Chan WP, Liu GC. MR imaging of primary skeletal muscle diseases in children. AJR Am J Roentgenol. 2002;179:989–97.

    Article  Google Scholar 

  29. Janssen BH, Voet NB, Nabuurs CI, Kan HE, de Rooy JW, Geurts AC, Padberg GW, van Engelen BG, Heerschap A. Distinct disease phases in muscles of facioscapulohumeral dystrophy patients identified by MR detected fat infiltration. PLoS One. 2014;9:e85416.

    Article  Google Scholar 

  30. Regula JU, Jestaedt L, Jende F, Bartsch A, Meinck HM, Weber MA. Clinical muscle testing compared with whole-body magnetic resonance imaging in facio-scapulo-humeral muscular dystrophy. Clin Neuroradiol. 2016;26:445–55.

    Article  CAS  Google Scholar 

  31. Li GD, Liang YY, Xu P, Ling J, Chen YM. Diffusion-tensor imaging of thigh muscles in Duchenne muscular dystrophy: correlation of apparent diffusion coefficient and fractional anisotropy values with fatty infiltration. AJR Am J Roentgenol. 2016;206:867–70.

    Article  Google Scholar 

  32. Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med. 1996;36:893–906.

    Article  CAS  Google Scholar 

  33. Urtasun M, Sáenz A, Roudaut C, Poza JJ, Urtizberea JA, Cobo AM, Richard I, García Bragado F, Leturcq F, Kaplan JC, Martí Massó JF, Beckmann JS, López de Munain A. Limb-girdle muscular dystrophy in Guipuzcoa (Basque country, Spain). Brain. 1998;121(Pt 9):1735–47.

    Article  Google Scholar 

  34. Mah JK, Korngut L, Dykeman J, Day L, Pringsheim T, Jette N. A systematic review and meta-analysis on the epidemiology of Duchenne and Becker muscular dystrophy. Neuromuscul Disord. 2014;24:482–91.

    Article  Google Scholar 

Download references

Acknowledgements

We kindly thank Dr. Jan Sedlacik (Department of Neuroradiology, University Medical Center Hamburg-Eppendorf) for the critical review of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Keller.

Ethics declarations

Conflict of interest

S. Keller, Z.J. Wang, A. Aigner, A.C. Kim, A. Golsari, G. Adam and J. Yamamura declare that they have no competing interests. H. Kooijman is an employee of Philips Healthcare.

Caption Electronic Supplementary Material

Supplement Table 1.

Pearson correlation coefficientsa of ADC, FA, FTL, MFF, and demographics in cases and controls (aBased on mixed effects models with random intercepts for person)

Supplement Table 2:

Standard deviation of three technical replicate regions-of-interest used for the custom and selective ROI method in cases

Supplement Table 3.

Correlation analysis of custom and selective ROI DTI metrics and FTL

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keller, S., Wang, Z.J., Aigner, A. et al. Diffusion Tensor Imaging of Dystrophic Skeletal Muscle. Clin Neuroradiol 29, 231–242 (2019). https://doi.org/10.1007/s00062-018-0667-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-018-0667-3

Keywords

Navigation