Skip to main content

Advertisement

Log in

Cellular uptake of collagens and implications for immune cell regulation in disease

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

As the dominant constituent of the extracellular matrix (ECM), collagens of different types are critical for the structural properties of tissues and make up scaffolds for cellular adhesion and migration. Importantly, collagens also directly modulate the phenotypic state of cells by transmitting signals that influence proliferation, differentiation, polarization, survival, and more, to cells of mesenchymal, epithelial, or endothelial origin. Recently, the potential of collagens to provide immune regulatory signals has also been demonstrated, and it is believed that pathological changes in the ECM shape immune cell phenotype. Collagens are themselves heavily regulated by a multitude of structural modulations or by catabolic pathways. One of these pathways involves a cellular uptake of collagens or soluble collagen-like defense collagens of the innate immune system mediated by endocytic collagen receptors. This cellular uptake is followed by the degradation of collagens in lysosomes. The potential of this pathway to regulate collagens in pathological conditions is evident from the increased extracellular accumulation of both collagens and collagen-like defense collagens following endocytic collagen receptor ablation. Here, we review how endocytic collagen receptors regulate collagen turnover during physiological conditions and in pathological conditions, such as fibrosis and cancer. Furthermore, we highlight the potential of collagens to regulate immune cells and discuss how endocytic collagen receptors can directly regulate immune cell activity in pathological conditions or do it indirectly by altering the extracellular milieu. Finally, we discuss the potential collagen receptors utilized by immune cells to directly detect ECM-related changes in the tissues which they encounter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15(12):786–801. https://doi.org/10.1038/nrm3904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fields GB (2013) Interstitial collagen catabolism. J Biol Chem 288(13):8785–8793. https://doi.org/10.1074/jbc.R113.451211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rainero E (2016) Extracellular matrix endocytosis in controlling matrix turnover and beyond: emerging roles in cancer. Biochem Soc Trans 44(5):1347–1354. https://doi.org/10.1042/BST20160159

    Article  CAS  PubMed  Google Scholar 

  4. Amar S, Smith L, Fields GB (2017) Fields GB (2017) Matrix metalloproteinase collagenolysis in health and disease. Biochim Biophys Acta Mol Cell Res 1864(11 Pt A):1940–1951. https://doi.org/10.1016/j.bbamcr.2017.04.015

    Article  CAS  PubMed  Google Scholar 

  5. Drake MT, Clarke BL, Oursler MJ, Khosla S (2017) Cathepsin K inhibitors for osteoporosis: biology, potential clinical utility, and lessons learned. Endocr Rev 38(4):325–350. https://doi.org/10.1210/er.2015-1114

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zigrino P, Brinckmann J, Niehoff A, Lu Y, Giebeler N, Eckes B, Kadler KE, Mauch C (2016) Fibroblast-derived MMP-14 regulates collagen homeostasis in adult skin. J Invest Dermatol 136(8):1575–1583. https://doi.org/10.1016/j.jid.2016.03.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Melrose J, Shu C, Whitelock JM, Lord MS (2016) The cartilage extracellular matrix as a transient developmental scaffold for growth plate maturation. Matrix Biol 52–54:363–383. https://doi.org/10.1016/j.matbio.2016.01.008

    Article  CAS  PubMed  Google Scholar 

  8. Inada M, Wang Y, Byrne MH, Rahman MU, Miyaura C, Lopez-Otin C, Krane SM (2004) Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification. Proc Natl Acad Sci U S A 101(49):17192–17197. https://doi.org/10.1073/pnas.0407788101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bar-Shavit Z (2007) The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell. J Cell Biochem 102(5):1130–1139. https://doi.org/10.1002/jcb.21553

    Article  CAS  PubMed  Google Scholar 

  10. Madsen DH, Jurgensen HJ, Siersbaek MS, Kuczek DE, Grey Cloud L, Liu S, Behrendt N, Grontved L, Weigert R, Bugge TH (2017) Tumor-associated macrophages derived from circulating inflammatory monocytes degrade collagen through cellular uptake. Cell Rep 21(13):3662–3671. https://doi.org/10.1016/j.celrep.2017.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67. https://doi.org/10.1016/j.cell.2010.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abu El-Asrar AM, Mohammad G, Allegaert E, Ahmad A, Siddiquei MM, Alam K, Gikandi PW, De Hertogh G, Opdenakker G (2018) Matrix metalloproteinase-14 is a biomarker of angiogenic activity in proliferative diabetic retinopathy. Mol Vis 24:394–406

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Noda K, Ishida S, Inoue M, Obata K, Oguchi Y, Okada Y, Ikeda E (2003) Production and activation of matrix metalloproteinase-2 in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 44(5):2163–2170. https://doi.org/10.1167/iovs.02-0662

    Article  PubMed  Google Scholar 

  14. Johnson JL, Dwivedi A, Somerville M, George SJ, Newby AC (2011) Matrix metalloproteinase (MMP)-3 activates MMP-9 mediated vascular smooth muscle cell migration and neointima formation in mice. Arterioscler Thromb Vasc Biol 31(9):e35–e44. https://doi.org/10.1161/ATVBAHA.111.225623

    Article  CAS  PubMed  Google Scholar 

  15. Filippov S, Koenig GC, Chun TH, Hotary KB, Ota I, Bugge TH, Roberts JD, Fay WP, Birkedal-Hansen H, Holmbeck K, Sabeh F, Allen ED, Weiss SJ (2005) MT1-matrix metalloproteinase directs arterial wall invasion and neointima formation by vascular smooth muscle cells. J Exp Med 202(5):663–671. https://doi.org/10.1084/jem.20050607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Curino AC, Engelholm LH, Yamada SS, Holmbeck K, Lund LR, Molinolo AA, Behrendt N, Nielsen BS, Bugge TH (2005) Intracellular collagen degradation mediated by uPARAP/Endo180 is a major pathway of extracellular matrix turnover during malignancy. J Cell Biol 169(6):977–985. https://doi.org/10.1083/jcb.200411153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Madsen DH, Jurgensen HJ, Ingvarsen S, Melander MC, Vainer B, Egerod KL, Hald A, Rono B, Madsen CA, Bugge TH, Engelholm LH, Behrendt N (2012) Endocytic collagen degradation: a novel mechanism involved in protection against liver fibrosis. J Pathol 227(1):94–105. https://doi.org/10.1002/path.3981

    Article  CAS  PubMed  Google Scholar 

  18. Everts V, van der Zee E, Creemers L, Beertsen W (1996) Phagocytosis and intracellular digestion of collagen, its role in turnover and remodelling. Histochem J 28(4):229–245

    Article  CAS  PubMed  Google Scholar 

  19. Arora PD, Manolson MF, Downey GP, Sodek J, McCulloch CA (2000) A novel model system for characterization of phagosomal maturation, acidification, and intracellular collagen degradation in fibroblasts. J Biol Chem 275(45):35432–35441. https://doi.org/10.1074/jbc.M003221200

    Article  CAS  PubMed  Google Scholar 

  20. Segal G, Lee W, Arora PD, McKee M, Downey G, McCulloch CA (2001) Involvement of actin filaments and integrins in the binding step in collagen phagocytosis by human fibroblasts. J Cell Sci 114(Pt 1):119–129

    CAS  PubMed  Google Scholar 

  21. Di Lullo GA, Sweeney SM, Korkko J, Ala-Kokko L, San Antonio JD (2002) Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem 277(6):4223–4231. https://doi.org/10.1074/jbc.M110709200

    Article  CAS  PubMed  Google Scholar 

  22. Lee H, Overall CM, McCulloch CA, Sodek J (2006) A critical role for the membrane-type 1 matrix metalloproteinase in collagen phagocytosis. Mol Biol Cell 17(11):4812–4826. https://doi.org/10.1091/mbc.e06-06-0486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bhide VM, Laschinger CA, Arora PD, Lee W, Hakkinen L, Larjava H, Sodek J, McCulloch CA (2005) Collagen phagocytosis by fibroblasts is regulated by decorin. J Biol Chem 280(24):23103–23113. https://doi.org/10.1074/jbc.M410060200

    Article  CAS  PubMed  Google Scholar 

  24. Shi F, Harman J, Fujiwara K, Sottile J (2010) Collagen I matrix turnover is regulated by fibronectin polymerization. Am J Physiol Cell Physiol 298(5):C1265–1275. https://doi.org/10.1152/ajpcell.00341.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Behrendt N, Jensen ON, Engelholm LH, Mortz E, Mann M, Dano K (2000) A urokinase receptor-associated protein with specific collagen binding properties. J Biol Chem 275(3):1993–2002

    Article  CAS  PubMed  Google Scholar 

  26. Sheikh H, Yarwood H, Ashworth A, Isacke CM (2000) Endo180, an endocytic recycling glycoprotein related to the macrophage mannose receptor is expressed on fibroblasts, endothelial cells and macrophages and functions as a lectin receptor. J Cell Sci 113(Pt 6):1021–1032

    CAS  PubMed  Google Scholar 

  27. East L, Isacke CM (2002) The mannose receptor family. Biochim Biophys Acta 1572(2–3):364–386. https://doi.org/10.1016/s0304-4165(02)00319-7

    Article  CAS  PubMed  Google Scholar 

  28. Burgdorf S, Lukacs-Kornek V, Kurts C (2006) The mannose receptor mediates uptake of soluble but not of cell-associated antigen for cross-presentation. J Immunol 176(11):6770–6776. https://doi.org/10.4049/jimmunol.176.11.6770

    Article  CAS  PubMed  Google Scholar 

  29. Napper CE, Drickamer K, Taylor ME (2006) Collagen binding by the mannose receptor mediated through the fibronectin type II domain. Biochem J 395(3):579–586. https://doi.org/10.1042/BJ20052027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jurgensen HJ, Johansson K, Madsen DH, Porse A, Melander MC, Sorensen KR, Nielsen C, Bugge TH, Behrendt N, Engelholm LH (2014) Complex determinants in specific members of the mannose receptor family govern collagen endocytosis. J Biol Chem 289(11):7935–7947. https://doi.org/10.1074/jbc.M113.512780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Melander MC, Jurgensen HJ, Madsen DH, Engelholm LH, Behrendt N (2015) The collagen receptor uPARAP/Endo180 in tissue degradation and cancer. Int J Oncol 47(4):1177–1188. https://doi.org/10.3892/ijo.2015.3120(Review)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Engelholm LH, Nielsen BS, Netzel-Arnett S, Solberg H, Chen XD, Lopez Garcia JM, Lopez-Otin C, Young MF, Birkedal-Hansen H, Dano K, Lund LR, Behrendt N, Bugge TH (2001) The urokinase plasminogen activator receptor-associated protein/endo180 is coexpressed with its interaction partners urokinase plasminogen activator receptor and matrix metalloprotease-13 during osteogenesis. Lab Invest 81(10):1403–1414

    Article  CAS  PubMed  Google Scholar 

  33. Abdelgawad ME, Soe K, Andersen TL, Merrild DM, Christiansen P, Kjaersgaard-Andersen P, Delaisse JM (2014) Does collagen trigger the recruitment of osteoblasts into vacated bone resorption lacunae during bone remodeling? Bone 67:181–188. https://doi.org/10.1016/j.bone.2014.07.012

    Article  CAS  PubMed  Google Scholar 

  34. Howard MJ, Isacke CM (2002) The C-type lectin receptor Endo180 displays internalization and recycling properties distinct from other members of the mannose receptor family. J Biol Chem 277(35):32320–32331. https://doi.org/10.1074/jbc.M203631200

    Article  CAS  PubMed  Google Scholar 

  35. East L, McCarthy A, Wienke D, Sturge J, Ashworth A, Isacke CM (2003) A targeted deletion in the endocytic receptor gene Endo180 results in a defect in collagen uptake. EMBO Rep 4(7):710–716. https://doi.org/10.1038/sj.embor.embor882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Engelholm LH, List K, Netzel-Arnett S, Cukierman E, Mitola DJ, Aaronson H, Kjoller L, Larsen JK, Yamada KM, Strickland DK, Holmbeck K, Dano K, Birkedal-Hansen H, Behrendt N, Bugge TH (2003) uPARAP/Endo180 is essential for cellular uptake of collagen and promotes fibroblast collagen adhesion. J Cell Biol 160(7):1009–1015. https://doi.org/10.1083/jcb.200211091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kjoller L, Engelholm LH, Hoyer-Hansen M, Dano K, Bugge TH, Behrendt N (2004) uPARAP/endo180 directs lysosomal delivery and degradation of collagen IV. Exp Cell Res 293(1):106–116. https://doi.org/10.1016/j.yexcr.2003.10.008

    Article  CAS  PubMed  Google Scholar 

  38. Wienke D, MacFadyen JR, Isacke CM (2003) Identification and characterization of the endocytic transmembrane glycoprotein Endo180 as a novel collagen receptor. Mol Biol Cell 14(9):3592–3604. https://doi.org/10.1091/mbc.e02-12-0814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mousavi SA, Sato M, Sporstol M, Smedsrod B, Berg T, Kojima N, Senoo H (2005) Uptake of denatured collagen into hepatic stellate cells: evidence for the involvement of urokinase plasminogen activator receptor-associated protein/Endo180. Biochem J 387(Pt 1):39–46. https://doi.org/10.1042/BJ20040966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Madsen DH, Engelholm LH, Ingvarsen S, Hillig T, Wagenaar-Miller RA, Kjoller L, Gardsvoll H, Hoyer-Hansen G, Holmbeck K, Bugge TH, Behrendt N (2007) Extracellular collagenases and the endocytic receptor, urokinase plasminogen activator receptor-associated protein/Endo180, cooperate in fibroblast-mediated collagen degradation. J Biol Chem 282(37):27037–27045. https://doi.org/10.1074/jbc.M701088200

    Article  CAS  PubMed  Google Scholar 

  41. Sprangers S, Behrendt N, Engelholm L, Cao Y, Everts V (2017) Phagocytosis of collagen fibrils by fibroblasts in vivo is independent of the uPARAP/Endo180 receptor. J Cell Biochem 118(6):1590–1595. https://doi.org/10.1002/jcb.25821

    Article  CAS  PubMed  Google Scholar 

  42. Madsen DH, Ingvarsen S, Jürgensen HJ, Melander MC, Kjøller L, Moyer A, Honoré C, Madsen CA, Garred P, Burgdorf S, Bugge TH, Behrendt N, Engelholm LH (2011) The non-phagocytic route of collagen uptake. J Biol Chem 286(30):26996–27010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Madsen DH, Jurgensen HJ, Ingvarsen S, Melander MC, Albrechtsen R, Hald A, Holmbeck K, Bugge TH, Behrendt N, Engelholm LH (2013) Differential actions of the endocytic collagen receptor uPARAP/Endo180 and the collagenase MMP-2 in bone homeostasis. PLoS ONE 8(8):e71261. https://doi.org/10.1371/journal.pone.0071261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wagenaar-Miller RA, Engelholm LH, Gavard J, Yamada SS, Gutkind JS, Behrendt N, Bugge TH, Holmbeck K (2007) Complementary roles of intracellular and pericellular collagen degradation pathways in vivo. Mol Cell Biol 27(18):6309–6322. https://doi.org/10.1128/MCB.00291-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fasquelle C, Sartelet A, Li W, Dive M, Tamma N, Michaux C, Druet T, Huijbers IJ, Isacke CM, Coppieters W, Georges M, Charlier C (2009) Balancing selection of a frame-shift mutation in the MRC2 gene accounts for the outbreak of the Crooked Tail Syndrome in Belgian Blue Cattle. PLoS Genet 5(9):e1000666. https://doi.org/10.1371/journal.pgen.1000666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sartelet A, Klingbeil P, Franklin CK, Fasquelle C, Geron S, Isacke CM, Georges M, Charlier C (2012) Allelic heterogeneity of Crooked Tail Syndrome: result of balancing selection? Anim Genet 43(5):604–607. https://doi.org/10.1111/j.1365-2052.2011.02311.x

    Article  CAS  PubMed  Google Scholar 

  47. Martinez-Pomares L, Wienke D, Stillion R, McKenzie EJ, Arnold JN, Harris J, McGreal E, Sim RB, Isacke CM, Gordon S (2006) Carbohydrate-independent recognition of collagens by the macrophage mannose receptor. Eur J Immunol 36(5):1074–1082. https://doi.org/10.1002/eji.200535685

    Article  CAS  PubMed  Google Scholar 

  48. Malovic I, Sorensen KK, Elvevold KH, Nedredal GI, Paulsen S, Erofeev AV, Smedsrod BH, McCourt PA (2007) The mannose receptor on murine liver sinusoidal endothelial cells is the main denatured collagen clearance receptor. Hepatology 45(6):1454–1461. https://doi.org/10.1002/hep.21639

    Article  CAS  PubMed  Google Scholar 

  49. Madsen DH, Leonard D, Masedunskas A, Moyer A, Jurgensen HJ, Peters DE, Amornphimoltham P, Selvaraj A, Yamada SS, Brenner DA, Burgdorf S, Engelholm LH, Behrendt N, Holmbeck K, Weigert R, Bugge TH (2013) M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway. J Cell Biol 202(6):951–966. https://doi.org/10.1083/jcb.201301081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jürgensen HJ, Silva LM, Krigslund O, van Putten SM, Madsen DH, Behrendt N, Engelholm LH, Bugge TH (2019) CCL2/MCP-1 signaling drives extracellular matrix turnover by diverse macrophage subsets. Matrix Biol Plus. https://doi.org/10.1016/j.mbplus.2019.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lopez-Guisa JM, Cai X, Collins SJ, Yamaguchi I, Okamura DM, Bugge TH, Isacke CM, Emson CL, Turner SM, Shankland SJ, Eddy AA (2012) Mannose receptor 2 attenuates renal fibrosis. J Am Soc Nephrol 23(2):236–251. https://doi.org/10.1681/ASN.2011030310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bundesmann MM, Wagner TE, Chow YH, Altemeier WA, Steinbach T, Schnapp LM (2012) Role of urokinase plasminogen activator receptor-associated protein in mouse lung. Am J Respir Cell Mol Biol 46(2):233–239. https://doi.org/10.1165/rcmb.2010-0485OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Atabai K, Jame S, Azhar N, Kuo A, Lam M, McKleroy W, Dehart G, Rahman S, Xia DD, Melton AC, Wolters P, Emson CL, Turner SM, Werb Z, Sheppard D (2009) Mfge8 diminishes the severity of tissue fibrosis in mice by binding and targeting collagen for uptake by macrophages. J Clin Invest 119(12):3713–3722. https://doi.org/10.1172/JCI40053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ramachandran P, Pellicoro A, Vernon MA, Boulter L, Aucott RL, Ali A, Hartland SN, Snowdon VK, Cappon A, Gordon-Walker TT, Williams MJ, Dunbar DR, Manning JR, van Rooijen N, Fallowfield JA, Forbes SJ, Iredale JP (2012) Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci U S A 109(46):E3186–3195. https://doi.org/10.1073/pnas.1119964109

    Article  PubMed  PubMed Central  Google Scholar 

  55. Schnack Nielsen B, Rank F, Engelholm LH, Holm A, Dano K, Behrendt N (2002) Urokinase receptor-associated protein (uPARAP) is expressed in connection with malignant as well as benign lesions of the human breast and occurs in specific populations of stromal cells. Int J Cancer 98(5):656–664

    Article  PubMed  Google Scholar 

  56. Sulek J, Wagenaar-Miller RA, Shireman J, Molinolo A, Madsen DH, Engelholm LH, Behrendt N, Bugge TH (2007) Increased expression of the collagen internalization receptor uPARAP/Endo180 in the stroma of head and neck cancer. J Histochem Cytochem 55(4):347–353. https://doi.org/10.1369/jhc.6A7133.2006

    Article  CAS  PubMed  Google Scholar 

  57. Engelholm LH, Melander MC, Hald A, Persson M, Madsen DH, Jurgensen HJ, Johansson K, Nielsen C, Norregaard KS, Ingvarsen SZ, Kjaer A, Trovik CS, Laerum OD, Bugge TH, Eide J, Behrendt N (2016) Targeting a novel bone degradation pathway in primary bone cancer by inactivation of the collagen receptor uPARAP/Endo180. J Pathol 238(1):120–133. https://doi.org/10.1002/path.4661

    Article  CAS  PubMed  Google Scholar 

  58. Wienke D, Davies GC, Johnson DA, Sturge J, Lambros MB, Savage K, Elsheikh SE, Green AR, Ellis IO, Robertson D, Reis-Filho JS, Isacke CM (2007) The collagen receptor Endo180 (CD280) is expressed on basal-like breast tumor cells and promotes tumor growth in vivo. Cancer Res 67(21):10230–10240. https://doi.org/10.1158/0008-5472.CAN-06-3496

    Article  CAS  PubMed  Google Scholar 

  59. Huijbers IJ, Iravani M, Popov S, Robertson D, Al-Sarraj S, Jones C, Isacke CM (2010) A role for fibrillar collagen deposition and the collagen internalization receptor endo180 in glioma invasion. PLoS ONE 5(3):e9808. https://doi.org/10.1371/journal.pone.0009808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nielsen CF, van Putten SM, Lund IK, Melander MC, Norregaard KS, Jurgensen HJ, Reckzeh K, Christensen KR, Ingvarsen SZ, Gardsvoll H, Jensen KE, Hamerlik P, Engelholm LH, Behrendt N (2017) The collagen receptor uPARAP/Endo180 as a novel target for antibody-drug conjugate mediated treatment of mesenchymal and leukemic cancers. Oncotarget 8(27):44605–44624. https://doi.org/10.18632/oncotarget.17883

    Article  PubMed  PubMed Central  Google Scholar 

  61. Postlethwaite AE, Kang AH (1976) Collagen-and collagen peptide-induced chemotaxis of human blood monocytes. J Exp Med 143(6):1299–1307. https://doi.org/10.1084/jem.143.6.1299

    Article  CAS  PubMed  Google Scholar 

  62. Wesley RB 2nd, Meng X, Godin D, Galis ZS (1998) Extracellular matrix modulates macrophage functions characteristic to atheroma: collagen type I enhances acquisition of resident macrophage traits by human peripheral blood monocytes in vitro. Arterioscler Thromb Vasc Biol 18(3):432–440. https://doi.org/10.1161/01.atv.18.3.432

    Article  CAS  PubMed  Google Scholar 

  63. Stahl M, Schupp J, Jager B, Schmid M, Zissel G, Muller-Quernheim J, Prasse A (2013) Lung collagens perpetuate pulmonary fibrosis via CD204 and M2 macrophage activation. PLoS ONE 8(11):e81382. https://doi.org/10.1371/journal.pone.0081382

    Article  PubMed  PubMed Central  Google Scholar 

  64. Larsen AMH, Kuczek DE, Kalvisa A, Siersbæk MS, Thorseth M-L, Carretta M, Grøntved L, Vang O, Madsen DH (2019) Collagen density modulates the immunosuppressive functions of tumor-associated macrophages. bioRxiv. https://doi.org/10.1101/513986

    Article  Google Scholar 

  65. Schultz HS, Nitze LM, Zeuthen LH, Keller P, Gruhler A, Pass J, Chen J, Guo L, Fleetwood AJ, Hamilton JA, Berchtold MW, Panina S (2015) Collagen induces maturation of human monocyte-derived dendritic cells by signaling through osteoclast-associated receptor. J Immunol 194(7):3169–3179. https://doi.org/10.4049/jimmunol.1402800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Poudel B, Yoon DS, Lee JH, Lee YM, Kim DK (2012) Collagen I enhances functional activities of human monocyte-derived dendritic cells via discoidin domain receptor 2. Cell Immunol 278(1–2):95–102. https://doi.org/10.1016/j.cellimm.2012.07.004

    Article  CAS  PubMed  Google Scholar 

  67. Sangaletti S, Chiodoni C, Tripodo C, Colombo MP (2017) Common extracellular matrix regulation of myeloid cell activity in the bone marrow and tumor microenvironments. Cancer Immunol Immunother 66(8):1059–1067. https://doi.org/10.1007/s00262-017-2014-y

    Article  CAS  PubMed  Google Scholar 

  68. Pruitt HC, Lewis D, Ciccaglione M, Connor S, Smith Q, Hickey JW, Schneck JP, Gerecht S (2019) Collagen fiber structure guides 3D motility of cytotoxic T lymphocytes. Matrix Biol. https://doi.org/10.1016/j.matbio.2019.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wolf K, Te Lindert M, Krause M, Alexander S, Te Riet J, Willis AL, Hoffman RM, Figdor CG, Weiss SJ, Friedl P (2013) Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J Cell Biol 201(7):1069–1084. https://doi.org/10.1083/jcb.201210152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hartmann N, Giese NA, Giese T, Poschke I, Offringa R, Werner J, Ryschich E (2014) Prevailing role of contact guidance in intrastromal T cell trapping in human pancreatic cancer. Clin Cancer Res 20(13):3422–3433. https://doi.org/10.1158/1078-0432.CCR-13-2972

    Article  CAS  PubMed  Google Scholar 

  71. Kuczek DE, Larsen AMH, Thorseth ML, Carretta M, Kalvisa A, Siersbaek MS, Simoes AMC, Roslind A, Engelholm LH, Noessner E, Donia M, Svane IM, Straten PT, Grontved L, Madsen DH (2019) Collagen density regulates the activity of tumor-infiltrating T cells. J Immunother Cancer 7(1):68. https://doi.org/10.1186/s40425-019-0556-6

    Article  PubMed  PubMed Central  Google Scholar 

  72. O'Connor RS, Hao X, Shen K, Bashour K, Akimova T, Hancock WW, Kam LC, Milone MC (2012) Substrate rigidity regulates human T cell activation and proliferation. J Immunol 189(3):1330–1339. https://doi.org/10.4049/jimmunol.1102757

    Article  CAS  PubMed  Google Scholar 

  73. Feng Y, Reinherz EL, Lang MJ (2018) alphabeta T cell receptor mechanosensing forces out serial engagement. Trends Immunol 39(8):596–609. https://doi.org/10.1016/j.it.2018.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumour progression. Nat Rev Cancer 9(2):108–122. https://doi.org/10.1038/nrc2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schedin P, Keely PJ (2011) Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harb Perspect Biol 3(1):a003228. https://doi.org/10.1101/cshperspect.a003228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen Y, Terajima M, Yang Y, Sun L, Ahn YH, Pankova D, Puperi DS, Watanabe T, Kim MP, Blackmon SH, Rodriguez J, Liu H, Behrens C, Wistuba II, Minelli R, Scott KL, Sanchez-Adams J, Guilak F, Pati D, Thilaganathan N, Burns AR, Creighton CJ, Martinez ED, Zal T, Grande-Allen KJ, Yamauchi M, Kurie JM (2015) Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma. J Clin Invest 125(3):1147–1162. https://doi.org/10.1172/JCI74725

    Article  PubMed  PubMed Central  Google Scholar 

  77. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906. https://doi.org/10.1016/j.cell.2009.10.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ (2006) Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 4(1):38. https://doi.org/10.1186/1741-7015-4-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Armstrong T, Packham G, Murphy LB, Bateman AC, Conti JA, Fine DR, Johnson CD, Benyon RC, Iredale JP (2004) Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma. Clin Cancer Res 10(21):7427–7437. https://doi.org/10.1158/1078-0432.CCR-03-0825

    Article  CAS  PubMed  Google Scholar 

  80. Ng MR, Brugge JS (2009) A stiff blow from the stroma: collagen crosslinking drives tumor progression. Cancer Cell 16(6):455–457. https://doi.org/10.1016/j.ccr.2009.11.013

    Article  CAS  PubMed  Google Scholar 

  81. Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, Jong RA, Hislop G, Chiarelli A, Minkin S, Yaffe MJ (2007) Mammographic density and the risk and detection of breast cancer. N Engl J Med 356(3):227–236. https://doi.org/10.1056/NEJMoa062790

    Article  CAS  PubMed  Google Scholar 

  82. Conklin MW, Eickhoff JC, Riching KM, Pehlke CA, Eliceiri KW, Provenzano PP, Friedl A, Keely PJ (2011) Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol 178(3):1221–1232. https://doi.org/10.1016/j.ajpath.2010.11.076

    Article  PubMed  PubMed Central  Google Scholar 

  83. Bredfeldt JS, Liu Y, Conklin MW, Keely PJ, Mackie TR, Eliceiri KW (2014) Automated quantification of aligned collagen for human breast carcinoma prognosis. J Pathol Inform 5(1):28. https://doi.org/10.4103/2153-3539.139707

    Article  PubMed  PubMed Central  Google Scholar 

  84. Acerbi I, Cassereau L, Dean I, Shi Q, Au A, Park C, Chen YY, Liphardt J, Hwang ES, Weaver VM (2015) Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr Biol (Camb) 7(10):1120–1134. https://doi.org/10.1039/c5ib00040h

    Article  CAS  Google Scholar 

  85. Liu X, Wu H, Byrne M, Jeffrey J, Krane S, Jaenisch R (1995) A targeted mutation at the known collagenase cleavage site in mouse type I collagen impairs tissue remodeling. J Cell Biol 130(1):227–237. https://doi.org/10.1083/jcb.130.1.227

    Article  CAS  PubMed  Google Scholar 

  86. Barcus CE, O'Leary KA, Brockman JL, Rugowski DE, Liu Y, Garcia N, Yu M, Keely PJ, Eliceiri KW, Schuler LA (2017) Elevated collagen-I augments tumor progressive signals, intravasation and metastasis of prolactin-induced estrogen receptor alpha positive mammary tumor cells. Breast Cancer Res 19(1):9. https://doi.org/10.1186/s13058-017-0801-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, White JG, Keely PJ (2008) Collagen density promotes mammary tumor initiation and progression. BMC Med 6:11. https://doi.org/10.1186/1741-7015-6-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Perry SW, Schueckler JM, Burke K, Arcuri GL, Brown EB (2013) Stromal matrix metalloprotease-13 knockout alters Collagen I structure at the tumor-host interface and increases lung metastasis of C57BL/6 syngeneic E0771 mammary tumor cells. BMC Cancer 13:411. https://doi.org/10.1186/1471-2407-13-411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vellinga TT, den Uil S, Rinkes IH, Marvin D, Ponsioen B, Alvarez-Varela A, Fatrai S, Scheele C, Zwijnenburg DA, Snippert H, Vermeulen L, Medema JP, Stockmann HB, Koster J, Fijneman RJ, de Rooij J, Kranenburg O (2016) Collagen-rich stroma in aggressive colon tumors induces mesenchymal gene expression and tumor cell invasion. Oncogene 35(40):5263–5271. https://doi.org/10.1038/onc.2016.60

    Article  CAS  PubMed  Google Scholar 

  90. Zou X, Feng B, Dong T, Yan G, Tan B, Shen H, Huang A, Zhang X, Zhang M, Yang P, Zheng M, Zhang Y (2013) Up-regulation of type I collagen during tumorigenesis of colorectal cancer revealed by quantitative proteomic analysis. J Proteom 94:473–485. https://doi.org/10.1016/j.jprot.2013.10.020

    Article  CAS  Google Scholar 

  91. Jolly LA, Novitskiy S, Owens P, Massoll N, Cheng N, Fang W, Moses HL, Franco AT (2016) Fibroblast-mediated collagen remodeling within the tumor microenvironment facilitates progression of thyroid cancers driven by BrafV600E and Pten loss. Cancer Res 76(7):1804–1813. https://doi.org/10.1158/0008-5472.CAN-15-2351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ohno S, Tachibana M, Fujii T, Ueda S, Kubota H, Nagasue N (2002) Role of stromal collagen in immunomodulation and prognosis of advanced gastric carcinoma. Int J Cancer 97(6):770–774. https://doi.org/10.1002/ijc.10144

    Article  CAS  PubMed  Google Scholar 

  93. Li HX, Zheng JH, Fan HX, Li HP, Gao ZX, Chen D (2013) Expression of alphavbeta6 integrin and collagen fibre in oral squamous cell carcinoma: association with clinical outcomes and prognostic implications. J Oral Pathol Med 42(7):547–556. https://doi.org/10.1111/jop.12044

    Article  CAS  PubMed  Google Scholar 

  94. Pickup MW, Mouw JK, Weaver VM (2014) The extracellular matrix modulates the hallmarks of cancer. EMBO Rep 15(12):1243–1253. https://doi.org/10.15252/embr.201439246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Salmon H, Franciszkiewicz K, Damotte D, Dieu-Nosjean MC, Validire P, Trautmann A, Mami-Chouaib F, Donnadieu E (2012) Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J Clin Invest 122(3):899–910. https://doi.org/10.1172/JCI45817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jiang H, Hegde S, DeNardo DG (2017) Tumor-associated fibrosis as a regulator of tumor immunity and response to immunotherapy. Cancer Immunol Immunother 66(8):1037–1048. https://doi.org/10.1007/s00262-017-2003-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Afik R, Zigmond E, Vugman M, Klepfish M, Shimshoni E, Pasmanik-Chor M, Shenoy A, Bassat E, Halpern Z, Geiger T, Sagi I, Varol C (2016) Tumor macrophages are pivotal constructors of tumor collagenous matrix. J Exp Med 213(11):2315–2331. https://doi.org/10.1084/jem.20151193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Varol C (2019) Tumorigenic interplay between macrophages and collagenous matrix in the tumor microenvironment. Methods Mol Biol 1944:203–220. https://doi.org/10.1007/978-1-4939-9095-5_15

    Article  CAS  PubMed  Google Scholar 

  99. Huo CW, Chew G, Hill P, Huang D, Ingman W, Hodson L, Brown KA, Magenau A, Allam AH, McGhee E, Timpson P, Henderson MA, Thompson EW, Britt K (2015) High mammographic density is associated with an increase in stromal collagen and immune cells within the mammary epithelium. Breast Cancer Res 17:79. https://doi.org/10.1186/s13058-015-0592-1

    Article  PubMed  PubMed Central  Google Scholar 

  100. Garcia-Mendoza MG, Inman DR, Ponik SM, Jeffery JJ, Sheerar DS, Van Doorn RR, Keely PJ (2016) Neutrophils drive accelerated tumor progression in the collagen-dense mammary tumor microenvironment. Breast Cancer Res 18(1):49. https://doi.org/10.1186/s13058-016-0703-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Weiskirchen R, Weiskirchen S, Tacke F (2019) Organ and tissue fibrosis: Molecular signals, cellular mechanisms and translational implications. Mol Aspects Med 65:2–15. https://doi.org/10.1016/j.mam.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  102. Pakshir P, Hinz B (2018) The big five in fibrosis: macrophages, myofibroblasts, matrix, mechanics, and miscommunication. Matrix Biol 68–69:81–93. https://doi.org/10.1016/j.matbio.2018.01.019

    Article  CAS  PubMed  Google Scholar 

  103. Misharin AV, Morales-Nebreda L, Reyfman PA, Cuda CM, Walter JM, McQuattie-Pimentel AC, Chen CI, Anekalla KR, Joshi N, Williams KJN, Abdala-Valencia H, Yacoub TJ, Chi M, Chiu S, Gonzalez-Gonzalez FJ, Gates K, Lam AP, Nicholson TT, Homan PJ, Soberanes S, Dominguez S, Morgan VK, Saber R, Shaffer A, Hinchcliff M, Marshall SA, Bharat A, Berdnikovs S, Bhorade SM, Bartom ET, Morimoto RI, Balch WE, Sznajder JI, Chandel NS, Mutlu GM, Jain M, Gottardi CJ, Singer BD, Ridge KM, Bagheri N, Shilatifard A, Budinger GRS, Perlman H (2017) Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J Exp Med 214(8):2387–2404. https://doi.org/10.1084/jem.20162152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Raker V, Haub J, Stojanovic A, Cerwenka A, Schuppan D, Steinbrink K (2017) Early inflammatory players in cutanous fibrosis. J Dermatol Sci 87(3):228–235. https://doi.org/10.1016/j.jdermsci.2017.06.009

    Article  CAS  PubMed  Google Scholar 

  105. Novobrantseva TI, Majeau GR, Amatucci A, Kogan S, Brenner I, Casola S, Shlomchik MJ, Koteliansky V, Hochman PS, Ibraghimov A (2005) Attenuated liver fibrosis in the absence of B cells. J Clin Invest 115(11):3072–3082. https://doi.org/10.1172/JCI24798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wu J, Saleh MA, Kirabo A, Itani HA, Montaniel KR, Xiao L, Chen W, Mernaugh RL, Cai H, Bernstein KE, Goronzy JJ, Weyand CM, Curci JA, Barbaro NR, Moreno H, Davies SS, Roberts LJ 2nd, Madhur MS, Harrison DG (2016) Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J Clin Invest 126(1):50–67. https://doi.org/10.1172/JCI80761

    Article  PubMed  Google Scholar 

  107. Vannella KM, Wynn TA (2017) Mechanisms of organ injury and repair by macrophages. Annu Rev Physiol 79:593–617. https://doi.org/10.1146/annurev-physiol-022516-034356

    Article  CAS  PubMed  Google Scholar 

  108. Lebleu VS, Sugimoto H, Miller CA, Gattone VH 2nd, Kalluri R (2008) Lymphocytes are dispensable for glomerulonephritis but required for renal interstitial fibrosis in matrix defect-induced Alport renal disease. Lab Invest 88(3):284–292. https://doi.org/10.1038/labinvest.3700715

    Article  CAS  PubMed  Google Scholar 

  109. Artsen AM, Rytel M, Liang R, King GE, Meyn L, Abramowitch SD, Moalli PA (2019) Mesh induced fibrosis: the protective role of T regulatory cells. Acta Biomater 96:203–210. https://doi.org/10.1016/j.actbio.2019.07.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jiao J, Sastre D, Fiel MI, Lee UE, Ghiassi-Nejad Z, Ginhoux F, Vivier E, Friedman SL, Merad M, Aloman C (2012) Dendritic cell regulation of carbon tetrachloride-induced murine liver fibrosis regression. Hepatology 55(1):244–255. https://doi.org/10.1002/hep.24621

    Article  CAS  PubMed  Google Scholar 

  111. Pociask DA, Chen K, Choi SM, Oury TD, Steele C, Kolls JK (2011) gammadelta T cells attenuate bleomycin-induced fibrosis through the production of CXCL10. Am J Pathol 178(3):1167–1176. https://doi.org/10.1016/j.ajpath.2010.11.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mackel AM, DeLustro F, DeLustro B, Fudenberg HH, LeRoy EC (1982) Immune response to connective tissue components of the basement membrane. Connect Tissue Res 10(3–4):333–343. https://doi.org/10.3109/03008208209008058

    Article  CAS  PubMed  Google Scholar 

  113. Borg BB, Seetharam A, Subramanian V, Basha HI, Lisker-Melman M, Korenblat K, Anderson CD, Shenoy S, Chapman WC, Crippin JS, Mohanakumar T (2011) Immune response to extracellular matrix collagen in chronic hepatitis C-induced liver fibrosis. Liver Transpl 17(7):814–823. https://doi.org/10.1002/lt.22303

    Article  PubMed  PubMed Central  Google Scholar 

  114. Sawada H, Suou T, Hirayama C (1985) Cellular sensitivity to collagen in liver disease. Clin Exp Immunol 59(2):364–370

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Parker MW, Rossi D, Peterson M, Smith K, Sikstrom K, White ES, Connett JE, Henke CA, Larsson O, Bitterman PB (2014) Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J Clin Invest 124(4):1622–1635. https://doi.org/10.1172/JCI71386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Giannandrea M, Parks WC (2014) Diverse functions of matrix metalloproteinases during fibrosis. Dis Model Mech 7(2):193–203. https://doi.org/10.1242/dmm.012062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Leitinger B (2011) Transmembrane collagen receptors. Annu Rev Cell Dev Biol 27:265–290. https://doi.org/10.1146/annurev-cellbio-092910-154013

    Article  CAS  PubMed  Google Scholar 

  118. Franco C, Britto K, Wong E, Hou G, Zhu SN, Chen M, Cybulsky MI, Bendeck MP (2009) Discoidin domain receptor 1 on bone marrow-derived cells promotes macrophage accumulation during atherogenesis. Circ Res 105(11):1141–1148. https://doi.org/10.1161/CIRCRESAHA.109.207357

    Article  CAS  PubMed  Google Scholar 

  119. Hachehouche LN, Chetoui N, Aoudjit F (2010) Implication of discoidin domain receptor 1 in T cell migration in three-dimensional collagen. Mol Immunol 47(9):1866–1869. https://doi.org/10.1016/j.molimm.2010.02.023

    Article  CAS  PubMed  Google Scholar 

  120. Meyaard L, Adema GJ, Chang C, Woollatt E, Sutherland GR, Lanier LL, Phillips JH (1997) LAIR-1, a novel inhibitory receptor expressed on human mononuclear leukocytes. Immunity 7(2):283–290. https://doi.org/10.1016/s1074-7613(00)80530-0

    Article  CAS  PubMed  Google Scholar 

  121. Lebbink RJ, de Ruiter T, Adelmeijer J, Brenkman AB, van Helvoort JM, Koch M, Farndale RW, Lisman T, Sonnenberg A, Lenting PJ, Meyaard L (2006) Collagens are functional, high affinity ligands for the inhibitory immune receptor LAIR-1. J Exp Med 203(6):1419–1425. https://doi.org/10.1084/jem.20052554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lebbink RJ, de Ruiter T, Kaptijn GJ, Bihan DG, Jansen CA, Lenting PJ, Meyaard L (2007) Mouse leukocyte-associated Ig-like receptor-1 (mLAIR-1) functions as an inhibitory collagen-binding receptor on immune cells. Int Immunol 19(8):1011–1019. https://doi.org/10.1093/intimm/dxm071

    Article  CAS  PubMed  Google Scholar 

  123. Rygiel TP, Stolte EH, de Ruiter T, van de Weijer ML, Meyaard L (2011) Tumor-expressed collagens can modulate immune cell function through the inhibitory collagen receptor LAIR-1. Mol Immunol 49(1–2):402–406. https://doi.org/10.1016/j.molimm.2011.09.006

    Article  CAS  PubMed  Google Scholar 

  124. Meyaard L (2008) The inhibitory collagen receptor LAIR-1 (CD305). J Leukoc Biol 83(4):799–803. https://doi.org/10.1189/jlb.0907609

    Article  CAS  PubMed  Google Scholar 

  125. Boraschi-Diaz I, Mort JS, Bromme D, Senis YA, Mazharian A, Komarova SV (2018) Collagen type I degradation fragments act through the collagen receptor LAIR-1 to provide a negative feedback for osteoclast formation. Bone 117:23–30. https://doi.org/10.1016/j.bone.2018.09.006

    Article  CAS  PubMed  Google Scholar 

  126. Kim S, Easterling ER, Price LC, Smith SL, Coligan JE, Park JE, Brand DD, Rosloniec EF, Stuart JM, Kang AH, Myers LK (2017) The role of leukocyte-associated ig-like receptor-1 in suppressing collagen-induced arthritis. J Immunol 199(8):2692–2700. https://doi.org/10.4049/jimmunol.1700271

    Article  CAS  PubMed  Google Scholar 

  127. Tang X, Tian L, Esteso G, Choi SC, Barrow AD, Colonna M, Borrego F, Coligan JE (2012) Leukocyte-associated Ig-like receptor-1-deficient mice have an altered immune cell phenotype. J Immunol 188(2):548–558. https://doi.org/10.4049/jimmunol.1102044

    Article  CAS  PubMed  Google Scholar 

  128. Smith CW, Thomas SG, Raslan Z, Patel P, Byrne M, Lordkipanidze M, Bem D, Meyaard L, Senis YA, Watson SP, Mazharian A (2017) Mice lacking the inhibitory collagen receptor LAIR-1 exhibit a mild thrombocytosis and hyperactive platelets. Arterioscler Thromb Vasc Biol 37(5):823–835. https://doi.org/10.1161/ATVBAHA.117.309253

    Article  CAS  PubMed  Google Scholar 

  129. Kumawat K, Geerdink RJ, Hennus MP, Roda MA, van Ark I, Leusink-Muis T, Folkerts G, van Oort-Jansen A, Mazharian A, Watson SP, Coenjaerts FE, Bont L, Meyaard L (2019) LAIR-1 limits neutrophilic airway inflammation. Front Immunol 10:842. https://doi.org/10.3389/fimmu.2019.00842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Flies DB, Higuchi T, Harris JC, Jha V, Gimotty PA, Adams SF (2016) Immune checkpoint blockade reveals the stimulatory capacity of tumor-associated CD103(+) dendritic cells in late-stage ovarian cancer. Oncoimmunology 5(8):e1185583. https://doi.org/10.1080/2162402X.2016.1185583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wu X, Zhang L, Zhou J, Liu L, Fu Q, Fu A, Feng X, Xin R, Liu H, Gao Y, Xue J (2019) Clinicopathologic significance of LAIR-1 expression in hepatocellular carcinoma. Curr Probl Cancer 43(1):18–26. https://doi.org/10.1016/j.currproblcancer.2018.04.005

    Article  PubMed  Google Scholar 

  132. Wang Y, Zhang X, Miao F, Cao Y, Xue J, Cao Q, Zhang X (2016) Clinical significance of leukocyte-associated immunoglobulin-like receptor-1 expression in human cervical cancer. Exp Ther Med 12(6):3699–3705. https://doi.org/10.3892/etm.2016.3842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yang LL, Zhang MJ, Wu L, Mao L, Chen L, Yu GT, Deng WW, Zhang WF, Liu B, Sun WK, Sun ZJ (2019) LAIR-1 overexpression and correlation with advanced pathological grade and immune suppressive status in oral squamous cell carcinoma. Head Neck 41(4):1080–1086. https://doi.org/10.1002/hed.25539

    Article  PubMed  Google Scholar 

  134. Meyaard L (2010) LAIR and collagens in immune regulation. Immunol Lett 128(1):26–28. https://doi.org/10.1016/j.imlet.2009.09.014

    Article  CAS  PubMed  Google Scholar 

  135. Kim N, Takami M, Rho J, Josien R, Choi Y (2002) A novel member of the leukocyte receptor complex regulates osteoclast differentiation. J Exp Med 195(2):201–209. https://doi.org/10.1084/jem.20011681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Merck E, Gaillard C, Gorman DM, Montero-Julian F, Durand I, Zurawski SM, Menetrier-Caux C, Carra G, Lebecque S, Trinchieri G, Bates EE (2004) OSCAR is an FcRgamma-associated receptor that is expressed by myeloid cells and is involved in antigen presentation and activation of human dendritic cells. Blood 104(5):1386–1395. https://doi.org/10.1182/blood-2004-03-0850

    Article  CAS  PubMed  Google Scholar 

  137. Merck E, Gaillard C, Scuiller M, Scapini P, Cassatella MA, Trinchieri G, Bates EE (2006) Ligation of the FcR gamma chain-associated human osteoclast-associated receptor enhances the proinflammatory responses of human monocytes and neutrophils. J Immunol 176(5):3149–3156. https://doi.org/10.4049/jimmunol.176.5.3149

    Article  CAS  PubMed  Google Scholar 

  138. Barrow AD, Raynal N, Andersen TL, Slatter DA, Bihan D, Pugh N, Cella M, Kim T, Rho J, Negishi-Koga T, Delaisse JM, Takayanagi H, Lorenzo J, Colonna M, Farndale RW, Choi Y, Trowsdale J (2011) OSCAR is a collagen receptor that costimulates osteoclastogenesis in DAP12-deficient humans and mice. J Clin Invest 121(9):3505–3516. https://doi.org/10.1172/JCI45913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Merck E, de Saint-Vis B, Scuiller M, Gaillard C, Caux C, Trinchieri G, Bates EE (2005) Fc receptor gamma-chain activation via hOSCAR induces survival and maturation of dendritic cells and modulates toll-like receptor responses. Blood 105(9):3623–3632. https://doi.org/10.1182/blood-2004-07-2809

    Article  CAS  PubMed  Google Scholar 

  140. Schultz HS, Guo L, Keller P, Fleetwood AJ, Sun M, Guo W, Ma C, Hamilton JA, Bjorkdahl O, Berchtold MW, Panina S (2016) OSCAR-collagen signaling in monocytes plays a proinflammatory role and may contribute to the pathogenesis of rheumatoid arthritis. Eur J Immunol 46(4):952–963. https://doi.org/10.1002/eji.201545986

    Article  CAS  PubMed  Google Scholar 

  141. Herman S, Muller RB, Kronke G, Zwerina J, Redlich K, Hueber AJ, Gelse H, Neumann E, Muller-Ladner U, Schett G (2008) Induction of osteoclast-associated receptor, a key osteoclast costimulation molecule, in rheumatoid arthritis. Arthritis Rheum 58(10):3041–3050. https://doi.org/10.1002/art.23943

    Article  CAS  PubMed  Google Scholar 

  142. Jurgensen HJ, Norregaard KS, Sibree MM, Santoni-Rugiu E, Madsen DH, Wassilew K, Krustrup D, Garred P, Bugge TH, Engelholm LH, Behrendt N (2019) Immune regulation by fibroblasts in tissue injury depends on uPARAP-mediated uptake of collectins. J Cell Biol 218(1):333–349. https://doi.org/10.1083/jcb.201802148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Olde Nordkamp MJ, van Eijk M, Urbanus RT, Bont L, Haagsman HP, Meyaard L (2014) Leukocyte-associated Ig-like receptor-1 is a novel inhibitory receptor for surfactant protein D. J Leukoc Biol 96(1):105–111. https://doi.org/10.1189/jlb.3AB0213-092RR

    Article  CAS  PubMed  Google Scholar 

  144. Barrow AD, Palarasah Y, Bugatti M, Holehouse AS, Byers DE, Holtzman MJ, Vermi W, Skjodt K, Crouch E, Colonna M (2015) OSCAR is a receptor for surfactant protein D that activates TNF-alpha release from human CCR2+ inflammatory monocytes. J Immunol 194(7):3317–3326. https://doi.org/10.4049/jimmunol.1402289

    Article  CAS  PubMed  Google Scholar 

  145. Son M, Santiago-Schwarz F, Al-Abed Y, Diamond B (2012) C1q limits dendritic cell differentiation and activation by engaging LAIR-1. Proc Natl Acad Sci U S A 109(46):E3160–3167. https://doi.org/10.1073/pnas.1212753109

    Article  PubMed  PubMed Central  Google Scholar 

  146. Brondijk TH, de Ruiter T, Ballering J, Wienk H, Lebbink RJ, van Ingen H, Boelens R, Farndale RW, Meyaard L, Huizinga EG (2010) Crystal structure and collagen-binding site of immune inhibitory receptor LAIR-1: unexpected implications for collagen binding by platelet receptor GPVI. Blood 115(7):1364–1373. https://doi.org/10.1182/blood-2009-10-246322

    Article  CAS  PubMed  Google Scholar 

  147. Zhou L, Hinerman JM, Blaszczyk M, Miller JL, Conrady DG, Barrow AD, Chirgadze DY, Bihan D, Farndale RW, Herr AB (2016) Structural basis for collagen recognition by the immune receptor OSCAR. Blood 127(5):529–537. https://doi.org/10.1182/blood-2015-08-667055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Casey J, Kaplan J, Atochina-Vasserman EN, Gow AJ, Kadire H, Tomer Y, Fisher JH, Hawgood S, Savani RC, Beers MF (2005) Alveolar surfactant protein D content modulates bleomycin-induced lung injury. Am J Respir Crit Care Med 172(7):869–877. https://doi.org/10.1164/rccm.200505-767OC

    Article  PubMed  PubMed Central  Google Scholar 

  149. Aono Y, Ledford JG, Mukherjee S, Ogawa H, Nishioka Y, Sone S, Beers MF, Noble PW, Wright JR (2012) Surfactant protein-D regulates effector cell function and fibrotic lung remodeling in response to bleomycin injury. Am J Respir Crit Care Med 185(5):525–536. https://doi.org/10.1164/rccm.201103-0561OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. van der Pol P, Schlagwein N, van Gijlswijk DJ, Berger SP, Roos A, Bajema IM, de Boer HC, de Fijter JW, Stahl GL, Daha MR, van Kooten C (2012) Mannan-binding lectin mediates renal ischemia/reperfusion injury independent of complement activation. Am J Transplant 12(4):877–887. https://doi.org/10.1111/j.1600-6143.2011.03887.x

    Article  CAS  PubMed  Google Scholar 

  151. Walsh MC, Bourcier T, Takahashi K, Shi L, Busche MN, Rother RP, Solomon SD, Ezekowitz RA, Stahl GL (2005) Mannose-binding lectin is a regulator of inflammation that accompanies myocardial ischemia and reperfusion injury. J Immunol 175(1):541–546. https://doi.org/10.4049/jimmunol.175.1.541

    Article  CAS  PubMed  Google Scholar 

  152. Son M, Diamond B (2015) C1q-mediated repression of human monocytes is regulated by leukocyte-associated Ig-like receptor 1 (LAIR-1). Mol Med 20:559–568. https://doi.org/10.2119/molmed.2014.00185

    Article  PubMed  PubMed Central  Google Scholar 

  153. Son M, Porat A, He M, Suurmond J, Santiago-Schwarz F, Andersson U, Coleman TR, Volpe BT, Tracey KJ, Al-Abed Y, Diamond B (2016) C1q and HMGB1 reciprocally regulate human macrophage polarization. Blood 128(18):2218–2228. https://doi.org/10.1182/blood-2016-05-719757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Mary Jo Danton for critically reviewing this manuscript.

Funding

This study is supported by National Institute of Dental and Craniofacial Research (Intramural Research Program); Sundhed og Sygdom, Det Frie Forskningsråd (Grant Nos. 4092-00387B and DFF-4004-00340); Kræftens Bekæmpelse (Grant Nos. R90-A5989, R146-A9326-16-S2, R149-A9768-16-S47, R174-A11581-17-S52, R231-A13832, R222-A13103); Simon Fougner Hartmanns Familiefond; Region Hovedstadens forskningsfond; Novo Nordisk Fonden; Dansk Kræftforskningsfond.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Henrik J. Jürgensen or Daniel H. Madsen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jürgensen, H.J., van Putten, S., Nørregaard, K.S. et al. Cellular uptake of collagens and implications for immune cell regulation in disease. Cell. Mol. Life Sci. 77, 3161–3176 (2020). https://doi.org/10.1007/s00018-020-03481-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03481-3

Keywords

Navigation