Skip to main content

Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws

  • Chapter
  • First Online:
Advanced Numerical Approximation of Nonlinear Hyperbolic Equations

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1697))

Abstract

In these lecture notes we describe the construction, analysis, and application of ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes for hyperbolic conservation laws and related Hamilton-Jacobi equations. ENO and WENO schemes are high order accurate finite difference schemes designed for problems with piecewise smooth solutions containing discontinuities. The key idea lies at the approximation level, where a nonlinear adaptive procedure is used to automatically choose the locally smoothest stencil, hence avoiding crossing discontinuities in the interpolation procedure as much as possible. ENO and WENO schemes have been quite successful in applications, especially for problems containing both shocks and complicated smooth solution structures, such as compressible turbulence simulations and aeroacoustics.

These lecture notes are basically self-contained. It is our hope that with these notes and with the help of the quoted references, the readers can understand the algorithms and code them up for applications. Sample codes are also available from the author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Abgrall, On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation, Journal of Computational Physics, v114 (1994), pp.45–58.

    Article  MathSciNet  MATH  Google Scholar 

  2. N. Adams and K. Shariff, A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems, Journal of Computational Physics, v127 (1996), pp.27–51.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Atkins and C.-W. Shu, GKS and eigenvalue stability analysis of high order upwind scheme, in preparation.

    Google Scholar 

  4. G. R. Baker and M. J. Shelley, On the connection between thin vortex layers and vortex sheets, Journal of Fluid Mechanics, v215 (1990), pp.161–194.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Bardi and S. Osher, The nonconvex multi-dimensional Riemann problem for Hamilton-Jacobi equations, SIAM Journal on Mathematical Analysis, v22 (1991), pp.344–351.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Bell, P. Colella and H. Glaz, A Second Order Projection Method for the Incompressible Navier-Stokes Equations, Journal of Computational Physics, v85, 1989, pp.257–283.

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Bihari and A. Harten, Application of generalized wavelets: an adaptive multiresolution schemes Journal of Computational and Applied Mathematics, v61 (1995), pp.275–321.

    Article  MathSciNet  MATH  Google Scholar 

  8. W. Cai and C.-W. Shu, Uniform high-order spectral methods for one-and two-dimensional Euler equations, Journal of Computational Physics, v104 (1993), pp.427–443.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Canuto, M.Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, 1988.

    Google Scholar 

  10. M. Carpenter and C. Kennedy, Fourth-order 2N-storage Runge-Kutta schemes, NASA TM 109112, NASA Langley Research Center, June 1994.

    Google Scholar 

  11. J. Casper, Finite-volume implementation of high-order essentially nonoscillatory schemes in two dimensions, AIAA Journal, v30 (1992), pp.2829–2835.

    Article  MATH  Google Scholar 

  12. J. Casper and H. Atkins, A finite-volume high-order ENO scheme for two dimensional hyperbolic systems, Journal of Computational Physics, v106 (1993), pp.62–76.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Casper, C.-W. Shu and H. Atkins, Comparison of two formulations for high-order accurate essentially nonoscillatory schemes, AIAA Journal, v32 (1994), pp.1970–1977.

    Article  MATH  Google Scholar 

  14. C. Cercignani, I. Gamba, J. Jerome and C.-W. Shu, Applicability of the high field model: an analytical study via asymptotic parameters defining domain decomposition, VLSI Design, to appear.

    Google Scholar 

  15. C. Cercignani, I. Gamba, J. Jerome and C.-W. Shu, Applicability of the high field model: a preliminary numerical study, VLSI Design, to appear.

    Google Scholar 

  16. S. Christofi, The study of building blocks for ENO schemes, Ph.D. thesis, Division of Applied Mathematics, Brown University, September 1995.

    Google Scholar 

  17. B. Cockburn, An introduction to the discontinuous Galerkin method for convection-dominated problems this volume.

    Google Scholar 

  18. B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, Mathematics of Computation, v52 (1989), pp.411–435.

    MathSciNet  MATH  Google Scholar 

  19. B. Cockburn, S.-Y. Lin and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems, Journal of Computational Physics, v84 (1989), pp.90–113.

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Cockburn, S. Hou and C.-W. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case, Mathematics of Computation, v54 (1990), pp.545–581.

    MathSciNet  MATH  Google Scholar 

  21. B. Cockburn and C.-W. Shu, The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, to appear in Journal of Computational Physics.

    Google Scholar 

  22. M. Crandall and P. Lions, Viscosity solutions of Hamilton-Jacobi equations, Transactions of the American Mathematical Society, v277 (1983), pp.1–42.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Crandall and P. Lions, Two approximations of solutions of Hamilton-Jacobi equations, Mathematics of Computation, v43 (1984), pp.1–19.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Dolezal and S. Wong, Relativistic hydrodynamics and essentially nonoscillatory shock capturing schemes, Journal of Computational Physics, v120 (1995), pp.266–277.

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Donat and A. Marquina, Capturing shock reflections: an improved flux formula, Journal of Computational Physics, v125 (1996), pp.42–58.

    Article  MathSciNet  MATH  Google Scholar 

  26. W. E Shu and C.-W. Shu, A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow, Journal of Computational Physics, v110 (1994), pp.39–46.

    Article  MATH  Google Scholar 

  27. G. Erlebacher, Y. Hussaini and C.-W. Shu, Interaction of a shock with a longitudinal vortex, Journal of Fluid Mechanics, v337 (1997), pp.129–153.

    Article  MathSciNet  MATH  Google Scholar 

  28. E. Fatemi, J. Jerome and S. Osher, Solution of the hydrodynamic device model using high order non-oscillatory shock capturing algorithms, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, v10 (1991), pp.232–244.

    Article  Google Scholar 

  29. S. Gottlieb and C.-W. Shu, Total variation diminishing Runge-Kutta schemes, Mathematics of Computation, v67 (1998), pp.73–85.

    Article  MathSciNet  MATH  Google Scholar 

  30. B. Gustafsson, H.-O. Kreiss and A. Sundstrom, Stability theory of difference approximations for mixed initial boundary value problems, II, Mathematics of Computation, v26 (1972), pp.649–686.

    Article  MathSciNet  MATH  Google Scholar 

  31. E. Harabetian, S. Osher and C.-W. Shu, An Eulerian approach for vortex motion using a level set regularization procedure, Journal of Computational Physics, v127 (1996), pp.15–26.

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Harten, The artificial compression method for computation of shocks and contact discontinuities III: self-adjusting hybrid schemes, Mathematics of Computation, v32 (1978), pp.363–389

    MathSciNet  MATH  Google Scholar 

  33. A. Harten, High resolution schemes for hyperbolic conservation laws, Journal of Computational Physics, v49 (1983), pp.357–393.

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Harten, Preliminary results on the extension of ENO schemes to two dimensional problems, in Proceedings of the International Conference on Hyperbolic Problems, Saint-Etienne, 1986.

    Google Scholar 

  35. A. Harten, ENO schemes with subcell resolution, Journal of Computational Physics, v83 (1989), pp.148–184.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Harten, J. Hyman and P. Lax, On finite difference approximations and entropy conditions for shocks, Communications in Pure and Applied Mathematics, v29 (1976), pp.297–322.

    Article  MathSciNet  MATH  Google Scholar 

  37. A. Harten and S. Osher, Uniformly high-order accurate non-oscillatory schemes, I, SIAM Journal on Numerical Analysis, v24 (1987), pp.279–309.

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Harten, B. Engquist, S. Osher and S. Chakravarthy, Uniformly high order essentially non-oscillatory schemes, III, Journal of Computational Physics, v71 (1987), pp.231–303.

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Harten, S. Osher, B. Engquist and S. Chakravarthy, Some results on uniformly high order accurate essentially non-oscillatory schemes, Applied Numerical Mathematics v2 (1986), pp.347–377.

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Iske and T. Soner, On the structure of function spaces in optimal recovery of point functionals for ENO-schemes by radial basis functions, Numerische Mathematik, v74 (1996), pp.177–201.

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Jerome and C.-W. Shu, Energy models for one-carrier transport in semiconductor devices, in IMA Volumes in Mathematics and Its Applications, v59, W. Coughran, J. Cole, P. Lloyd and J. White, editors, Springer-Verlag, 1994, pp.185–207.

    Google Scholar 

  42. J. Jerome and C.-W. Shu, Transport effects and characteristic modes in the modeling and simulation of submicron devices, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, v14 (1995), pp.917–923.

    Article  Google Scholar 

  43. G. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, Journal of Computational Physics, v126 (1996), pp.202–228.

    Article  MathSciNet  MATH  Google Scholar 

  44. G. Jiang and S.-H. Yu, Discrete shocks for finite difference approximations to scalar conservation laws, SIAM Journal on Numerical Analysis, to appear.

    Google Scholar 

  45. G. Jiang and D. Peng, Weighted ENO schemes for Hamilton-Jacobi equations, to appear in SIAM Journal on Scientific Computing.

    Google Scholar 

  46. D. A. Kopriva, A Practical Assessment of Spectral Accuracy for Hyperbolic Problems with Discontinuities, Journal of Scientific Computing, v2, 1987, pp.249–262.

    Article  MATH  Google Scholar 

  47. R. Krasny, A study of singularity formation in a vortex sheet by the point-vortex approximation, Journal of Fluid Mechanics, v167 (1986), pp.65–93.

    Article  MathSciNet  MATH  Google Scholar 

  48. R. Krasny, Desingularization of periodic vortex sheet roll-up, Journal of Computational Physics, v65 (1986), pp.292–313.

    Article  MATH  Google Scholar 

  49. F. Ladeinde, E. O'Brien, X. Cai and W. Liu, Advection by polytropic compressible turbulence, Physics of Fluids, v7 (1995), pp.2848–2857.

    Article  MATH  Google Scholar 

  50. F. Lafon and S. Osher, High-order 2-dimensional nonoscillatory methods for solving Hamilton-Jacobi scalar equations, Journal of Computational Physics, v123 (1996), pp.235–253.

    Article  MathSciNet  MATH  Google Scholar 

  51. P. D. Lax and B. Wendroff, Systems of conservation laws, Communications in Pure and Applied Mathematics, v13 (1960), pp.217–237.

    Article  MathSciNet  MATH  Google Scholar 

  52. R.J. LeVeque, Numerical Methods for Conservation Laws, Birkhauser Verlag, Basel, 1990.

    Book  MATH  Google Scholar 

  53. X.-D. Liu, S. Osher and T. Chan, Weighted essentially nonoscillatory schemes, Journal of Computational Physics, v115 (1994), pp.200–212.

    Article  MathSciNet  MATH  Google Scholar 

  54. X.-D. Liu and S. Osher, Convex ENO high order multi-dimensional schemes without field by field decomposition or staggered grids, preprint.

    Google Scholar 

  55. A. Majda, J. McDonough and S. Osher, The Fourier Method for Nonsmooth Initial Data, Mathematics of Computation, v32, 1978, pp.1041–1081.

    Article  MathSciNet  MATH  Google Scholar 

  56. H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws, Journal of Computational Physics, v87 (1990), pp.408–463.

    Article  MathSciNet  MATH  Google Scholar 

  57. S. Osher, Riemann solvers, the entropy condition, and difference approximations, SIAM Journal on Numerical Analysis, v21 (1984), pp.217–235.

    Article  MathSciNet  MATH  Google Scholar 

  58. S. Osher and S. Chakravarthy, Upwind schemes and boundary conditions with applications to Euler equations in general geometries, Journal of Computational Physics, v50 (1983), pp.447–481.

    Article  MathSciNet  MATH  Google Scholar 

  59. S. Osher and J. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulation, Journal of Computational Physics, v79 (1988), pp.12–49.

    Article  MathSciNet  MATH  Google Scholar 

  60. S. Osher and C.-W. Shu, High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations, SIAM Journal on Numerical Analysis, v28 (1991), pp.907–922.

    Article  MathSciNet  MATH  Google Scholar 

  61. C.S. Peskin, Numerical analysis of blood flow in the heart, Journal of Computational Physics, v25 (1977), pp.220–252.

    Article  MathSciNet  MATH  Google Scholar 

  62. P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics, v43 (1981), pp.357–372.

    Article  MathSciNet  MATH  Google Scholar 

  63. A. rogerson and E. Meiberg, A numerical study of the convergence properties of ENO schemes, Journal of Scientific Computing, v5 (1990), pp.151–167.

    Article  MATH  Google Scholar 

  64. J. Sethian, Level Set Methods: Evolving Interfaces in Geometry, Fluid Dynamics, Computer Vision, and Material Science, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, New York, New York, 1996.

    MATH  Google Scholar 

  65. C.-W. Shu, TVB uniformly high order schemes for conservation laws, Mathematics of Computation, v49 (1987), pp.105–121.

    Article  MathSciNet  MATH  Google Scholar 

  66. C.-W. Shu, Total-Variation-Diminishing time discretizations, SIAM Journal on Scientific and Statistical Computing, v9 (1988), pp.1073–1084.

    Article  MathSciNet  MATH  Google Scholar 

  67. C.-W. Shu, Numerical experiments on the accuracy of ENO and modified ENO schemes, Journal of Scientific Computing, v5 (1990), pp.127–149.

    Article  MATH  Google Scholar 

  68. C.-W. Shu, Preface to the republication of “Uniform high order essentially non-oscillatory schemes, III,” by Harten, Engquist, Osher, and Chakravarthy, Journal of Computational Physics, v131 (1997), pp.1–2.

    Article  Google Scholar 

  69. C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock capturing schemes, Journal of Computational Physics, v77 (1988), pp.439–471.

    Article  MathSciNet  MATH  Google Scholar 

  70. C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock capturing schemes II, Journal of Computational Physics, v83 (1989), pp.32–78.

    Article  MathSciNet  MATH  Google Scholar 

  71. C.-W. Shu, T.A. Zang, G. Erlebacher, D. Whitaker, and S. Osher, High order ENO schemes applied to two-and three-dimensional compressible flow, Applied Numerical Mathematics, v9 (1992), pp.45–71.

    Article  MATH  Google Scholar 

  72. C.-W. Shu and Y. Zeng, High order essentially non-oscillatory scheme for viscoelasticity with fading memory, Quarterly of Applied Mathematics, v55 (1997), pp.459–484.

    MathSciNet  MATH  Google Scholar 

  73. K. Siddiqi, B. Kimia and C.-W. Shu, Geometric shock-capturing ENO schemes for subpixel interpolation, computation and curve evolution, Computer Vision Graphics and Image Processing: Graphical Models and Image Processing (CVGIP:GMIP), to appear.

    Google Scholar 

  74. J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983.

    Book  MATH  Google Scholar 

  75. G. A. Sod, Numerical Methods in Fluid Dynamics, Cambridge University Press, Cambridge, 1985.

    Book  MATH  Google Scholar 

  76. J. Strikwerda, Initial boundary value problems for the method of lines, Journal of Computational Physics, v34 (1980), pp.94–107.

    Article  MathSciNet  MATH  Google Scholar 

  77. M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions to incompressible two phase flow, Journal of Computational Physics, v114 (1994), pp.146–159.

    Article  MATH  Google Scholar 

  78. P. K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM Journal on Numerical Analysis, v21 (1984), pp.995–1011.

    Article  MathSciNet  MATH  Google Scholar 

  79. B. van Leer, Towards the ultimate conservative difference scheme V. A second order sequel to Godunov's method, Journal of Computational Physics, v32 (1979), pp.101–136.

    Article  Google Scholar 

  80. F. Walsteijn, Robust numerical methods for 2D turbulence, Journal of Computational Physics, v114 (1994), pp.129–145.

    Article  MathSciNet  MATH  Google Scholar 

  81. J.H. Williamson, Low-storage Runge-Kutta schemes, Journal of Computational Physics, v35 (1980), pp.48–56.

    Article  MathSciNet  MATH  Google Scholar 

  82. P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks, Journal of Computational Physics, v54, 1984, pp.115–173.

    Article  MathSciNet  MATH  Google Scholar 

  83. H. Yang, An artificial compression method for ENO schemes, the slope modification method, Journal of Computational Physics, v89 (1990), pp.125–160.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alfio Quarteroni

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this chapter

Cite this chapter

Shu, CW. (1998). Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Quarteroni, A. (eds) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol 1697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0096355

Download citation

  • DOI: https://doi.org/10.1007/BFb0096355

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64977-9

  • Online ISBN: 978-3-540-49804-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics