Skip to main content

Carbon-Based Nanocomposites: Processing, Electronic Properties and Applications

  • Chapter
  • First Online:
Carbon Nanomaterial Electronics: Devices and Applications

Part of the book series: Advances in Sustainability Science and Technology ((ASST))

Abstract

The last two decades have witnessed a large volume of research revolving around structure–property correlation in carbon-based nanocomposites, synthesized by several methods. The electronic properties of carbon-based nanocomposites vary mainly as a function of the kind of reinforcement, method of synthesis, and structure-dependent parameter. The structure-dependent parameter is highly influenced by the reinforcement and method of synthesis and plays a vital role in determining the ionic and electronic transport phenomenon in these materials. In other words, the interaction between electrons and the equilibrium 0-D (point) defects, along with different types of 2-D interfaces, plays an imperative function in the understanding of electronic properties, apart from the physical and chemical properties of these materials. The present chapter offers a concise overview of the state of the art on research and detailed discussions on some recent developments in understanding the electronic properties of some conventional carbon-based nanocomposites (synthesized by different techniques) based on the structure–property correlation in these materials. Finally, some of the significant challenges in this field have been addressed from industrial and fundamental viewpoints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhao Y, Wang LP, Sougrati MT, Feng Z, Leconte Y, Fisher A, Srinivasan M, Xu Z (2017) A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance li and na ion battery anodes. Adv Energy Mater 7(9):1–70

    Article  Google Scholar 

  2. Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12(1):1–39

    Article  Google Scholar 

  3. Baibarac M, Romero PG, Cantu ML et al (2006) Electrosynthesis of the poly (N- vinylcarbazole)/carbon nanotubes composite for applications in the supercapacitor field. Eur Polymer J 42:2302–2312

    Article  Google Scholar 

  4. Sanjinés R, Abad MD, Vâju Cr R, Smajda Mionić M, Magrez A (2011) Electrical properties and applications of carbon based nanocomposite materials: an overview. Surf Coat Technol 206:727–733

    Article  Google Scholar 

  5. Obreja VVN (2008) On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material-A review. Phys E 40:2596–2605

    Article  Google Scholar 

  6. Star A, Joshi V, Skarupo S, Thomas D, Gabriel JCP (2006) Gas sensor array based on metal-decorated carbon nanotubes. J Phys Chem B 110:21014

    Article  Google Scholar 

  7. Lu Y, Li J, Han J, Ng HT, Binder C, Partridge C, Meyyapan M (2004) Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors. Chem Phys Lett 391:344

    Article  Google Scholar 

  8. Ates M, Eker AA, Eker B (2017) Carbon nanotube-based nanocomposites and their applications. J Adhesion Sci Technol 31:1977–1997

    Article  Google Scholar 

  9. Liu XM, Huang ZD, Oh SW, Zhang B, Ma PC, Yuen MF, Kim JK (2012) Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: a review. Compos Sci Technol 72:121–144

    Article  Google Scholar 

  10. Wu X, Chen Y, Xing Z, Lam CWK, Pang SS, Zhang W, Ju Z (2019) Advanced carbon-based anodes for potassium-ion batteries. Adv Energy Mater 9:1–46

    Google Scholar 

  11. Felfer PJ, Alam T, Ringer SP, Cairney JM (2012) A reproducible method for damage- free site-specific preparation of atom probe tips from interfaces. Microsc Res Techniq 75:484–491

    Article  Google Scholar 

  12. Toji Y, Matsuda H, Herbig M, Choi PP, Raabe D (2014) Atomic-scale analysis of carbon partitioning between martensite and austenite by atom probe tomography and correlative transmission electron microscopy. Acta Mater 65:215–228

    Article  Google Scholar 

  13. Gault B, Moody MP, Cairney JM, Ringer SP (2012) Atom probe crystallography. Mater Today 15:378–386

    Article  Google Scholar 

  14. Herbig M, Raabe D, Li YJ, Choi P, Zaefferer S, Goto S (2014) Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys Rev Lett 112:

    Article  Google Scholar 

  15. Singh S, Wanderka N, Murty BS, Glatzel U, Banhart J (2011) Decomposition in multi- component AlCoCrCuFeNi high-entropy alloy. Acta Mater 59:182–190

    Article  Google Scholar 

  16. Raabe D, Herbig M, Sandlöbes S, Li Y, Tytko D, Kuzmina M, Ponge D, Choi PP (2014) Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces. Curr Opin Mater Sci 18:253–261

    Article  Google Scholar 

  17. Hornyak GL, Tibbals HF, Dutta J, Moore JJ (2009) Introduction to nanoscience and technology. CRC Press, New York

    Google Scholar 

  18. Kuzmany H, Fink J, Mehring M, Roth S (ed) (2000) Electronic properties of novel materials—molecular nanostructures. AIP conference proceedings, 544

    Google Scholar 

  19. Dresselhaus MS, Dresselhaus G, Avouris P (2001) Carbon nanotubes: synthesis, structure, properties and applications. 80 Springer, Berlin

    Google Scholar 

  20. Avouris P, Chen Z, Perebeinos V (2007) Carbon-based electronics. Nat Nanotechnol 2:605

    Article  Google Scholar 

  21. Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad Family of Carbon Nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115(11):4744–4822

    Article  Google Scholar 

  22. Lin Y, Taylor S, Li H, Shiral Fernando KA, Qu L, Wang W (2004) Advances toward bioapplications of carbon nanotubes. J Mater Chem 14:527–541

    Google Scholar 

  23. Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite science and technology. Wiley-VCH, Verlag GmbH & Co, Weinheim (Germany)

    Book  Google Scholar 

  24. Nalwa HS (2000) Handbook of nanostructured materials and nanotechnology. 5 Academic Press, New York

    Google Scholar 

  25. Modi A, Koratkar N, Lass E, Wei BQ, Ajayan PM (2003) Miniaturized gas ionization sensors using carbon nanotubes. Nature 424:171

    Article  Google Scholar 

  26. Ajayan PM, Lijima S (1992) Smallest carbon nanotube. Nature 358:23

    Article  Google Scholar 

  27. Qiu J, Lia Y, Wang Y, Li W (2004) Production of carbon nanotubes from coal. Fuel Process Technol 85:1663–1670

    Article  Google Scholar 

  28. Kavita M, Mordina B, Tiwari RK (2016) Thermal and mechanical behaviour of poly(vinyl butyral)- modified novolac epoxy/multiwalled carbon nanotube nanocomposites. J Appl Polym Sci 133:43333–43344

    Article  Google Scholar 

  29. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    Article  Google Scholar 

  30. Bouchard J, Cayla A, Devaux E, Campagne C (2013) Electrical and thermal conductivities of multiwalled carbon nanotubes-reinforced high performance polymer nanocomposites. Compos Sci Technol 86:177–184

    Article  Google Scholar 

  31. Ensafi AA, Soureshjani EH, Asl MJ, Rezaei B (2016) Polyoxometalate-decorated graphene nanosheets and carbon nanotubes, powerful electrocatalysts for hydrogen evolution reaction. Carbon 99:398–406

    Article  Google Scholar 

  32. Okajima K, Ikeda A, Kamoshita K, Sudoh M (2005) High rate performance of highly dispersed C60 on activated carbon capacitor. Electrochim Acta 51:972–977

    Article  Google Scholar 

  33. Zhou C, Kumar S, Doyle CD, Tour JM (2005) Functionalized single wall carbon nanotubes treated with pyrrole for electrochemical supercapacitor membranes. Chem Mater 17:1997–2002

    Article  Google Scholar 

  34. Yoon BJ, Jeong SH, Lee KH, Kim HS, Park CG, Han H (2004) Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes. Chem Phys Lett 388:170–174

    Article  Google Scholar 

  35. Koysuren O, Du C, Pan N, Bayram G (2009) Preparation and comparison of two electrodes for supercapacitors: Pani/CNT/Ni and Pani/Alizarin-treated nickel. J Appl Polym Sci 113:1070–1081

    Article  Google Scholar 

  36. Wang DW, Li F, Zhao J, Ren W, Chen ZG, Tan J, Wu ZS, Gentle I, Lu GQ, Cheng HM (2009) Fabrication of graphene (polyaniline composite paper via in situ anodic electropolymerization for high performance flexible electrode. ACS Nano 3:1745–1752

    Article  Google Scholar 

  37. Kim JY, Kim KH, Kim KB (2008) Fabrication and electrochemical properties of carbon nanotube/polypyrrole composite film electrodes with controlled pore size. J Power Sources 176:396–402

    Article  Google Scholar 

  38. An KH, Jeong SY, Hwang HR, Lee YH (2004) Enhanced sensitivity of a gas sensor incorporating single- walled carbon nanotube–polypyrrole nanocomposites. Adv Mater 16:1005–1009

    Article  Google Scholar 

  39. Cheng G, Zhao J, Tu Y, He P, Fang Y (2005) A sensitive DNA electrochemical biosensor based on magnetite with a glassy carbon electrode modified by multi-walled carbon nanotubes in polypyrrole. Anal Chim Acta 533:11–16

    Article  Google Scholar 

  40. Limelette P, Schmaltz B, Brault D, Gouineau M, Autret-Lambert C, Roger S, Grimal V, Van T (2014) Conductivity scaling and thermoelectric properties of polyaniline hydrochloride. J Appl Phys 115:

    Article  Google Scholar 

  41. Blaszczyk-Lezak I, Desmaret V, Mijangos C (2016) Electrically conducting polymer nanostructures confined in anodized aluminum oxide templates (AAO). Express Polym Lett 10:259–272

    Article  Google Scholar 

  42. Choudhury A, Kar P (2011) Doping effect of carboxylic acid group functionalized multi-walled carbon nanotube on polyaniline. Compos Part B Eng. 42:1641–1647

    Article  Google Scholar 

  43. Wang Y, Zhang S, Deng Y (2016) Semiconductor to metallic behavior transition in multi-wall carbon nanotubes/polyaniline composites with improved thermoelectric properties. Mater Lett 164:132–135

    Article  Google Scholar 

  44. Taberna PL, Chevallier G, Simon P, Plée D, Aubert T (2006) Activated carbon-carbon nanotube composite porous film for supercapacitor applications. Mater Res Bull 41:478–484

    Article  Google Scholar 

  45. Navarro-Flores E, Omanovic S (2005) Hydrogen evolution on nickel incorporated in three- dimensional conducting polymer layers. J Mol Catal A: Chem 242:182–194

    Article  Google Scholar 

  46. Huq MM, Hsieh CT, Ho CY (2016) Preparation of carbon nanotube-activated carbon hybrid electrodes by electrophoretic deposition for supercapacitor applications. Diamond Related Mater 62:58–64

    Article  Google Scholar 

  47. Khomenko V, Raymundo-Pinero E, Beguin F (2008) High-energy density graphite/AC capacitor in organic electrolyte. J Power Sources 177:643–651

    Article  Google Scholar 

  48. Qiu J, Wu X, Qiu T (2016) High electromagnetic wave absorbing performance of activated hollow carbon fibers decorated with CNTs and Ni nanoparticles. Ceram Int 42:5278–5285

    Article  Google Scholar 

  49. Gangupomu RH, Sattler ML, Ramirez D (2016) Comparative study of carbon nanotubes and granular activated carbon: physicochemical properties and adsorption capacities. J Hazard Mater 302:362–374

    Article  Google Scholar 

  50. Rudge A, Davey J, Raistrick I, Gottesfeld S (1994) Conducting polymers as active materials in electrochemical capacitors. J Power Sources 47:89

    Article  Google Scholar 

  51. Bouchard J, Cayla A, Odent S, Lutz V, Devaux E, Campagne C (2016) Processing and characterization of polyethersulfone wet-spun nanocomposite fibres containing multi walled carbon Nanotubes. Synth Met 217:304–313

    Article  Google Scholar 

  52. Yuan D, Yang W, Ni J, Gao L (2015) Sandwich structured MoO2@TiO2@CNT nanocomposites with high-rate performance for lithium ion batteries. Electrochim Acta 163:57–63

    Article  Google Scholar 

  53. Wang YG, Wang ZD, Xia YY (2005) An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes. Electrochim Acta 50:5641–5646

    Article  Google Scholar 

  54. Alam RS, Moradi M, Nikmanesh H (2016) Influence of multi-walled carbon nanotubes (MWCNTs) volume percentage on the magnetic and microwave absorbing properties of BaMg0.5Co0.5TiFe10O19/MWCNTs nanocomposites. Mater Res Bull 73:261–267

    Article  Google Scholar 

  55. Yuan QH, Zeng XS, Liu Y, Luo L, Wu J, Wang Y, Zhou G (2016) Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO. Carbon 96:843–855

    Article  Google Scholar 

  56. Islam MS, Deng Y, Tong L, Roy AK, Minett AI, Gomes VG (2016) Grafting carbon nanotubes directly onto carbon fibers for superior mechanical stability: towards next generation aerospace composites and energy storage applications. Carbon 96:701–710

    Article  Google Scholar 

  57. Wu G, Ma L, Liu L, Wang Y, Xie F, Zhong Z, Zhao M, Jiang B, Huang Y (2016) Interface enhancement of carbon fiber reinforced methylphenylsilicone resin composites modified with silanized carbon nanotubes. Mater Des 89:1343–1349

    Article  Google Scholar 

  58. Wang Y, Colas G, Filleter T (2016) Improvements in the mechanical properties of carbon nanotube fibers through graphene oxide interlocking. Carbon 98:291–299

    Article  Google Scholar 

  59. Yang LJ, Cui JL, Wang Y et al (2016) Research progress on the interconnection of carbon nanotubes. New Carbon Mater 31:1–17

    Google Scholar 

  60. Tamrakar S, An Q, Thostenson ET, Rider AN, Haque BZ (Gama), Gillespie JW Jr (2016) Tailoring interfacial properties by controlling carbon nanotube coating thickness on glass fibers using electrophoretic deposition. ACS Appl Mater Interfaces. 8:1501–1510

    Google Scholar 

  61. Flahaut E, Peigney A, Laurent Ch, Ch. Chastel MF, Rousset A (2000) Acta Mater, 48:3803

    Google Scholar 

  62. Kymakis E, Alexandou I Amaratunga GAJ (2002) Single-walled carbon nanotube–polymer composites: electrical, optical and structural investigation. Synth. Met 127:59

    Google Scholar 

  63. Jiang L, Gao L (2005) Carbon nanotubes–metal nitride composites: a new class of nanocomposites with enhanced electrical properties. J Mater Chem 15:260–266

    Article  Google Scholar 

  64. Peigney A, Laurent Ch Rousset A (1997) Key Eng. Mater. 743:132–136

    Google Scholar 

  65. Rao CNR, Satishkumar BC, Govindaraj A, Nath M (2001) Nanotubes. Chem Phys Chem 2:78

    Article  Google Scholar 

  66. Sun Z, Zhang J, Yin L, Hu G, Fang R, Cheng HM, Li F (2017) Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat Comm 8:14627

    Article  Google Scholar 

  67. Zhao JG, Yang LX, Li FY, Yu RC, Jin CQ (2008) Electrical property evolution in the graphitization process of activated carbon by high-pressure sintering. Solid State Sci 10:1947

    Article  Google Scholar 

  68. Staryga E, Bak GW (2005) Relation between physical structure and electrical properties of diamond-like carbon thin films. Diamond Relat Mater 14:23

    Article  Google Scholar 

  69. Mott NF, Davis EA (1979) Electronic processes in non-crystalline materials. Clarendon Press, Oxford

    Google Scholar 

  70. Shimikawa K, Miyake K (1989) Hopping transport of localized π electrons in amorphous carbon films. Phys Rev B 39:7578

    Article  Google Scholar 

  71. Godet C, Kleider JP, Gudovskikh AS (2007) Frequency scaling of AC hopping transport in amorphous carbon nitride. Diamond Relat Mater 16:1799

    Article  Google Scholar 

  72. Vishwakarma PN, Subramanyam SV (2006) Hopping conduction in boron doped amorphous carbon films. J Appl Phys 100:

    Article  Google Scholar 

  73. Zhong DH, Sano H, Uchiyama Y, Kobayashi K (2000) Effect of low-level boron doping on oxidation behavior of polyimide-derived carbon films. Carbon 38:1199

    Article  Google Scholar 

  74. Sikora A, Berkesse A, Bourgeois O, Garden JL, Guerret-Piécourt C, Rouzaud JN, Loir AS, Garrelie F, Donnet C (2009) Structural and electrical characterization of boron-containing diamond-like carbon films deposited by femtosecond pulsed laser ablation. Solid State Sci 11:1738

    Article  Google Scholar 

  75. Xue B, Chen P, Hong Q, Lin J, Tan KL (2001) Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes. J Mater Chem 11:2378

    Article  Google Scholar 

  76. Meiners T, Frolov T, Rudd RE, Dehm G, Liebscher CH (2020) Observations of grain-boundary phase transformations in an elemental metal. Nature 579:375–378

    Article  Google Scholar 

  77. Mishnaevsky Jr LL (2007) Computational Mesomechanics of composites. John Wiley England

    Google Scholar 

  78. Nigro A, Nobile G, Rubino MG, Vaglio R (1988) Electrical resistivity of polycrystalline niobium nitride films. Phys Rev B 37:3970

    Article  Google Scholar 

  79. Yu Z, Tetard L, Zhai L, Thomas J (2013) Supercapacitor electrode-materials nanostructures from 0 to 3 dimensions. Energy Environ Sci 8:702–730

    Article  Google Scholar 

  80. Borenstien A, Noked M, Okashy S, Aurbach D (2013) Composite carbon nanotubes (CNT)/activated carbon electrodes for non-aqueous supercapacitors using organic electrolyte solutions. J Electrochem Soc 160:A1282–A1285

    Article  Google Scholar 

  81. Davies A, Yu A (2011) Material advancements in supercapacitors: from activated carbon to carbon nanotube and graphene. Can J Chem Eng 89:1342–1357

    Article  Google Scholar 

  82. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  Google Scholar 

  83. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  Google Scholar 

  84. Geng Y, Wang SJ, Kim JK (2009) Preparation of graphite nanoplatelets and graphene Sheets. J Colloid Interface Sci 336:592–598

    Article  Google Scholar 

  85. Zheng QB, Ip WH, Lin XY, Yousefi N, Yeung KK, Li Z, Kim JK (2011) Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir-Blodgett assembly. ACS Nano 5:6039–6051

    Article  Google Scholar 

  86. Lian PC, Zhu XF, Liang SZ, Li Z, Yang WS, Wang HH (2010) Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim Acta 55:3909–3914

    Article  Google Scholar 

  87. Wu ZS, Ren WC, Wen L, Gao LB, Zhao JP, Chen ZP (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194

    Article  Google Scholar 

  88. Su FY, You CH, He YB, Lv W, Cui W, Jin FM, Li B, Yang QH, Kang F (2010) Flexible and planar graphene conductive additives for lithium-ion batteries. J Mater Chem 20:9644–9650

    Article  Google Scholar 

  89. Guo Y, Wang T, Chen F, Sun X, Li X, Yu Z, Wan P, Chen X (2016) Hierarchical graphene–polyaniline nanocomposite films for high-performance flexible electronic gas sensors. Nanoscale 8(23):12073–12080

    Article  Google Scholar 

  90. Chang H, Wu H (2013) Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications. Energy Environ Sci 6(12):3483

    Article  Google Scholar 

  91. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  Google Scholar 

  92. Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  Google Scholar 

  93. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Edit 48:7752–7777

    Article  Google Scholar 

  94. Chang HX, Wu HK (2013) Graphene-based nanomaterials: synthesis, properties, and optical and optoelectronic applications. Adv Funct Mater 23:1984–1997

    Article  Google Scholar 

  95. Yang K, Feng L, Shi X, Liu Z (2013) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 42:530–547

    Article  Google Scholar 

  96. Zhu Y, Murali S, Cai W, Li X, Suk WJ, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Google Scholar 

  97. Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3:491–495

    Article  Google Scholar 

  98. Huang X, Yin ZY, Wu SX, Qi XY, He QY, Zhang QC, Yan QY, Boey F, Zhang H (2011) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7:1876–1902

    Article  Google Scholar 

  99. Lee C, Wei XD, Kysar JW Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Google Scholar 

  100. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  Google Scholar 

  101. Nair R, Blake P, Grigorenko A, Novoselov K, Booth T, Stauber T, Peres N, Geim A (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308

    Article  Google Scholar 

  102. Lin YM, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu HY, Grill A, Avouris P (2010) 100-GHz transistors from wafer-scale epitaxial graphene. Science 327:662

    Article  Google Scholar 

  103. Liao L, Lin Y-C, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang KL, Huang Y Duan X (2010) High-speed graphene transistors with a self-aligned nanowire gate. Nature 467:305–308

    Google Scholar 

  104. Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5:487–496

    Article  Google Scholar 

  105. Du M, Liao K, Lu Q, Shao Z (2019) Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: Challenges, materials, construction, and characterization. Energy Environ Sci 12(6):1780–1804

    Article  Google Scholar 

  106. Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-Gonzalez J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884

    Article  Google Scholar 

  107. Rajagopalan R, Tang Y, Ji X, Jia C, Wang H (2020) Advancements and Challenges in potassium ion batteries: a comprehensive review. Adv Funct, Mater, p 1909486

    Google Scholar 

  108. Cottrell AH (1949) Theory of dislocations. B. Chalmers (Ed.), Progress in Metal Physics Chapter. II, pp 1–52

    Google Scholar 

  109. Gleiter H (1983) On the structure of grain boundaries in metals. In: Latanision RM, Pickens JR (eds) Atomistics of fracture. Springer Boston MA

    Google Scholar 

  110. Zaafarani N, Raabe D, Roters F, Zaefferer S (2008) On the origin of deformation-induced rotation patterns below nanoindents. Acta Mater 56(1):31–42

    Article  Google Scholar 

  111. Zaafarani N, Raabe D, Singh RN, Roters F, Zaefferer S (2006) Three-dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations. Acta Mater 54:1863–1876

    Article  Google Scholar 

  112. Wheeler J, Mariani E, Piazolo S, Prior DJ, Trimby PJ, Drury MR (2009) The weighted Burgers vector: a new quantity for constraining dislocation densities and types using electron backscatter diffraction on 2D sections through crystalline materials. J Microscopy 233:482–494

    Article  MathSciNet  Google Scholar 

  113. Gutierrez-Urrutia I, Zaefferer S, Raabe D (2013) Coupling of Electron Channeling with EBSD: toward the quantitative characterization of deformation structures in the SEM. JOM 65(9):1229–1236

    Article  Google Scholar 

  114. Stoffers A, Cojocaru-Mirédin O, Seifert W, Zaefferer S, Riepe S, Raabe D (2015) Grain boundary segregation in multicrystalline silicon: correlative characterization by EBSD, EBIC, and atom probe tomography. Prog Photovolt: Res Appl 23:1742–1753

    Article  Google Scholar 

  115. Huber L, Hadian R, Grabowski B, Neugebauer J (2018) A machine learning approach to model solute grain boundary segregation. npj Comput Mater 64(1):1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manab Mallik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mallik, M., Saha, M. (2021). Carbon-Based Nanocomposites: Processing, Electronic Properties and Applications. In: Hazra, A., Goswami, R. (eds) Carbon Nanomaterial Electronics: Devices and Applications. Advances in Sustainability Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-1052-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1052-3_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1051-6

  • Online ISBN: 978-981-16-1052-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics