Skip to main content

Sensory Rhodopsin II: Signal Development and Transduction

  • Reference work entry
Encyclopedia of Biophysics

Synonyms

Phoborhodopsin

Definition

Sensory rhodopsin II belongs to the microbial rhodopsins, which constitute a family of seven-helix membrane proteins with the chromophore retinal. Members of this family are distributed throughout the Bacteria, Archaea, and Eukaryota. These photoactive proteins use a common structural design for two distinct functions: light-driven ion transport and phototaxis. The sensors start a signal transduction chain similar to that of the two-component system of eubacterial chemotaxis. The connecting membrane protein between the photoreceptor and the following cytoplasmic signal cascade is formed by a transducer molecule that binds tightly and specifically to its cognate receptor by means of two transmembrane helices (TM1 and TM2) (Gordeliy et al. 2002).

Basic Characteristics

The discovery of purple membrane from Halobacterium salinarum and its constituent bacteriorhodopsin (bR) more than 40 years ago (Oesterhel and Stoeckenius 1971) caused an intense interest...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bogomoln RA, Spudich JL. Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium. Proc Natl Acad Sci USA. 1982;79:6250–4.

    Google Scholar 

  • Doebber M, Bordignon E, Klare JP, Holterhues J, Martell S, Mennes N, Li L, Engelhard M, Steinhoff HJ. Salt-driven equilibrium between two conformations in the HAMP domain from Natronomonas pharaonis: the language of signal transfer? J Biol Chem. 2008;283:28691–701.

    CAS  PubMed  Google Scholar 

  • Gordeliy VI, Labahn J, Moukhametzianov R, Efremov R, Granzin J, Schlesinger R, Büldt G, Savopol T, Scheidig AJ, Klare JP, Engelhard M. Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature. 2002;419:484–7.

    CAS  PubMed  Google Scholar 

  • Gushchin I, Reshetnyak A, Borshchevskiy V, Ishchenko A, Round E, Grudinin G, Engelhard M, Büldt G, Gordeliy V. Active state of sensory rhodopsin II: structural determinants for signal transfer and proton pumping. J Mol Biol. 2011a;412:591–600.

    CAS  PubMed  Google Scholar 

  • Gushchin IY, Gordeliy VI, Grudinin S. Role of the HAMP domain region of sensory rhodopsin transducers in signal transduction. Biochemistry. 2011b;50:574–80.

    CAS  PubMed  Google Scholar 

  • Hazelbauer GL, Falke JJ, Parkinson JS. Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci. 2008;33:9–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hulko M, Berndt F, Gruber M, Linder JU, Truffault V, Schultz A, Martin J, Schultz JE, Lupas AN, Coles M. The HAMP domain structure implies helix rotation in transmembrane signaling. Cell. 2006;126:929–40.

    CAS  PubMed  Google Scholar 

  • Klare JP, Chizhov I, Engelhard M. Microbial rhodopsins: scaffolds for ion pumps, channels, and sensors. In: Schäfer G, Penefsky HS, editors. Bioenergetics: energy conservation and conversion. Berlin: Springer; 2007. p. 73–122.

    Google Scholar 

  • Matsuno-Yagi A, Mukohata Y. Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochem Biophys Res Commun. 1977;78:237–43.

    CAS  PubMed  Google Scholar 

  • Moukhametzianov R, Klare JP, Efremov R, Baeken C, Göppner A, Labahn J, Engelhard M, Büldt G, Gordeliy VI. Development of the signal in sensory rhodopsin and its transfer to the cognate transducer. Nature. 2006;440:115–9.

    CAS  PubMed  Google Scholar 

  • Oesterhel D, Stoeckenius W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol. 1971;233:149–52.

    Google Scholar 

  • Spudich JL. The multitalented microbial sensory rhodopsins. Trends Microbiol. 2006;14:480–7.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Büldt .

Editor information

Editors and Affiliations

Electronic supplementary material

Video 1

avi file: 11909 kB

Video 2

avi file: 17934 kB

Rights and permissions

Reprints and permissions

Copyright information

© 2013 European Biophysical Societies' Association (EBSA)

About this entry

Cite this entry

Büldt, G., Gordeliy, V., Klare, J.P., Engelhard, M. (2013). Sensory Rhodopsin II: Signal Development and Transduction. In: Roberts, G.C.K. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16712-6_803

Download citation

Publish with us

Policies and ethics