Skip to main content

Managing Costs and Review for Icing Problems

  • Chapter
  • First Online:
Renewable Energies

Abstract

The weather conditions have a key role in energy production of wind farms. Ice can appear in regions with cold conditions or during winter season. Ice on blades reduces the efficiency of the turbines, increases failures and downtime and causes imbalance of the rotor. This results in power losses which can be translating in operational costs that can reach millions of euros. Therefore, it is necessary to research and develop new methods for detection, prevention and removal of ice from blades. This chapter presents the current state of the art on ice detection and mitigation. Various techniques of detection, anti-icing and de-icing tare considered. Finally, an economic analysis of a selection of commercial ice detection systems is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Andersen E, Börjesson E, Vainionpää P, Silje Undem L (2011) Report wind power in cold climate

    Google Scholar 

  2. García Márquez FP, Pinar Pérez JM, Pliego Marugán A, Papaelias M (2016) Identification of critical components of wind turbines using FTA over the time. Renewable Energy 87(Part 2), 869–883

    Google Scholar 

  3. Laakso T (2005) Expert group study on wind energy projects in cold climates. Technical Research Centre of Finland. Submitted to the Executive Committee of the International Energy Agency Programme for Research and Development on Wind Energy Conversion Systems 2005

    Google Scholar 

  4. Durstwitz M (2003) A statistical evaluation of icing failures in Germany’s ‘250 MW Wind Programme, BOREAS VI 9-11 April 2003. Finland

    Google Scholar 

  5. Stenberg A (2010) Analys av vindkraftsstatistik i Finland, Diplomarbete, Aalto University, 2011-06-21. http://www.vtt.fi/files/projects/windenergystatistics/diplomarbete.pdf

  6. Peltola E (2008) Wind energy production in cold climate—15 years ahead—part 1, 2011-06-23

    Google Scholar 

  7. ICING BLADES project: Research of advanced techniques to remove and prevent the ice on the blades of the wind turbines 2014, Ref. Ref.: IPT-2012-0563-120000. Spanish Government, Innpacto research program

    Google Scholar 

  8. García FP, Tobias AM, Pinar JM, Papaelias M (2012) Condition monitoring of wind turbines: techniques and methods. Renewable Energy 46:169–178

    Article  Google Scholar 

  9. ISO 12494, 2001. Atmospheric icing of structures. ISO copyright office, Geneva, Switzerland

    Google Scholar 

  10. European project: WECO (Wind Energy Production in Cold Climate). EU Nr. JOR3-CT95-0014

    Google Scholar 

  11. Pinar Pérez JM, García Márquez FP, Ruiz Hernández D (2016) Economic viability analysis for icing blades detection in wind turbines. J Cleaner Prod 135:1150–1160

    Google Scholar 

  12. Skrimpas GA, Kleani K, Mijatovic N, Sweeney CW, Jensen BB, Holboell J (2015) Detection of icing on wind turbine blades by means of vibration and power curve analysis. Wind Energy. 2015

    Google Scholar 

  13. Sagol E, Reggio M, Ilinca A (2013) Issues concerning roughness on wind turbine blades. Renew Sustain Energy Rev 23:514–525

    Article  Google Scholar 

  14. Klainer SM, Milanovich FP (1990) Optical sensor for the detection of ice formation and other chemical species. United States Patent Number 4(913):519

    Google Scholar 

  15. Cronin DJ, Jackson DG, Owens DG (2001) Ice detector configuration for improved ice detection at near freezing conditions. United States Patent Number 6(320):511

    Google Scholar 

  16. Geraldi JJ, Hickman GA, Khatkhate AA, Pruzan DA (1996) Measuring ice distribution on a surface with attached capacitance electrodes. United States Patent Number 5(551):288

    Google Scholar 

  17. Lee H, Seegmiller B (1996) Ice detector and deicing fluid effectiveness monitoring system. United States Patent Number 5(523):959

    Google Scholar 

  18. Wallace RW, Reich AD, Sweet DB, Rauckhorst RL, Terry MJ, Holyfield ME (2002) Ice thickness detector. United States Patent Number 6(384):611

    Google Scholar 

  19. Maatuk J (2004) Microprocessor-based liquid sensor and ice detector. United States Patent Number 6(776):037

    Google Scholar 

  20. Luukkala M (1995) Detector for indicating ice formation on the wing of an aircraft. United States patent number 5(467):944

    Google Scholar 

  21. Labkotec website http://www.labkotec.fi/en/products/ice_detector_for_wind_turbines/ (18/03/2013)

  22. Carlsson V (2010) Measuring routines of ice accretion for Wind Turbine applications. The correlation between production losses and detection of ice

    Google Scholar 

  23. Combitech website http://www.combitech.se (18/03/2013)

  24. NewAvionics website http://www.newavionics.com/9734_ind.html (20/03/2013)

  25. Dalili N, Edrisy A, Carriveau R (2009) A review of surface engineering issues critical to wind turbine performance. Renew Sustain Energy Rev 13(2):428–438

    Article  Google Scholar 

  26. Mayer C (2007) Système électrothermique de dégivrage pour une pale d’éolienne. Master Thesis. UQAR. Rimouski (Canada), p 193

    Google Scholar 

  27. Anderson DN, Reich AD (1997) Tests of the performance of coatings for low ice adhesion. In: NASA (ed) Aerospace science meeting and exhibit. Reno (USA), p 14

    Google Scholar 

  28. Mansson J (2004) Why de-icing of wind turbine blades? Global Windpower. Chicago (USA), p 12

    Google Scholar 

  29. Jasinski WJ, Noe SC, Selig MC, Bragg MB (1998) Wind turbine performance under icing conditions. J SolEnergy Eng 120(1):60–65

    CAS  Google Scholar 

  30. Weis TM, Maissan J (2003) The effects of black blades on surface temperatures for wind turbines. Pembina Institute, Québec (Canada)

    Google Scholar 

  31. Munson J (2009) Wind power not a priority for Yukon energy. Yukon News

    Google Scholar 

  32. Patreau V, Morency F, Paraschivoiu I (1998) Analysis of thermal de-icing system for horizontal axis wind turbine blade. In: BOREAS IV FMI Conference. Hetta (Finland), pp 222–235

    Google Scholar 

  33. Laakso T, Peltola E (2005) Review on blade heating technology and future prospects. BOREAS VII FMI Conference. Saariselkä (Finland), p 12

    Google Scholar 

  34. Govoni JW, Franklin CH (1992) Evaluation of a pneumatic guy-line deicing boot. U.S. Army Cold Regions Research and Engineering Laboratory: Special Report, 92-04

    Google Scholar 

  35. http://aviation.stackexchange.com (2016)

  36. Tammelin B, Holttinen H, Morgan C, Richert F, Seifert H, Säntti K, Vølund P (1998) Wind energy production in cold climates. Proc Boreas IV Conf 1998:23–38

    Google Scholar 

  37. Ruiz de la Hermosa R, Garcia Marquez FP, Pinar Pérez JM (2015) Maintenance management of icing blades in wind turbines. Condition Monitor, Issue 334, pp 5–10

    Google Scholar 

  38. García Márquez FP, Lewis RW, Tobias AM, Roberts C (2008) Life cycle costs for railway condition monitoring. Transp Res Part E Logist Transp Rev 44(6), 1175–1187

    Google Scholar 

  39. Life Cycle Costing Guideline (2004) Total Asset Management, New South Wales Treasury, ISBN 0 7313 3325 X

    Google Scholar 

  40. Pinar JM, García FP, Tobias AM, Papaelias M (2013) Wind turbine reliability analysis. Renew Sustain Energy Rev 23:463–472

    Article  Google Scholar 

  41. Makkonen L, Laakso T, Marjaniemi M, Finstad KJ (2001) Modelling and prevention of ice accretion on wind turbines. Wind Eng 25(1):3–21

    Article  Google Scholar 

Download references

Acknowledgements

The work reported herewith has been financially supported by the Spanish Ministerio de Economía y Competitividad, under Research Grants DPI2015-67264-P and RTC-2016-5694-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fausto Pedro García Márquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pinar-Pérez, J.M., García Márquez, F.P. (2018). Managing Costs and Review for Icing Problems. In: García Márquez, F., Karyotakis, A., Papaelias, M. (eds) Renewable Energies. Springer, Cham. https://doi.org/10.1007/978-3-319-45364-4_7

Download citation

Publish with us

Policies and ethics