Skip to main content

LiDAR-Based Obstacle Detection and Distance Estimation in Navigation Assistance for Visually Impaired

  • Conference paper
  • First Online:
Universal Access in Human-Computer Interaction. User and Context Diversity (HCII 2022)

Abstract

People with visual impairments can face challenges with independent navigation and therefore may use traditional aids such as guide dogs, white canes, or a travel companion for navigation assistance. In recent years, researchers have been working on AI-based navigation assistance systems. Obstacle detection and distance estimation are two of the key challenges in such systems. In this paper, we describe a LiDAR-based obstacle detection and distance estimation technique. A lightweight deep learning-based model called EfficientDet-LiteV4 is used for obstacle detection, and a depth map from the LiDAR is used to estimate the distance to the obstacles. We have implemented and tested the approach with the LiDAR integrated into a Raspberry Pi4 board. The results show good accuracy in detecting the obstacles and in estimating distance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.leddartech.com/why-lidar/.

  2. 2.

    www.intelrealsense.com/lidar-camera-l515/.

  3. 3.

    www.intelrealsense.com/sdk-2/.

  4. 4.

    www.github.com/google/automl/tree/master/efficientdet.

  5. 5.

    www.github.com/tzutalin/labelImg.

  6. 6.

    www.tensorflow.org/lite/guide/model_maker.

  7. 7.

    www.tensorflow.org/lite/performance/post_training_quantization.

  8. 8.

    www.sevensense.ai/blog/localization.

References

  1. Kuriakose, B., Shrestha, R., Sandnes, F.E.: Tools and technologies for blind and visually impaired navigation support: a review. IETE Tech. Rev. 1–16 (2020)

    Google Scholar 

  2. SSMR, U.o.S.: Understanding the Needs of Blind and Partially Sighted People: their experiences, perspectives, and expectations (May 2009). https://www.rnib.org.uk/knowledge-and-research-hub/research-reports/general-research/understanding-needs

  3. Kuriakose, B., Shrestha, R., Sandnes, F.E.: Multimodal navigation systems for users with visual impairments-a review and analysis. Multimodal Technol. Interact. 4(4), 73 (2020)

    Article  Google Scholar 

  4. Kuriakose, B., Shrestha, R., Eika Sandnes, F.: Towards independent navigation with visual impairment: a prototype of a deep learning and smartphone-based assistant. In: The 14th PErvasive Technologies Related to Assistive Environments Conference, pp. 113–114 (2021)

    Google Scholar 

  5. Han, J., Kim, D., Lee, M., Sunwoo, M.: Enhanced road boundary and obstacle detection using a downward-looking LIDAR sensor. IEEE Trans. Veh. Technol. 61(3), 971–985 (2012)

    Article  Google Scholar 

  6. Peng, Y., Qu, D., Zhong, Y., Xie, S., Luo, J., Gu, J.: The obstacle detection and obstacle avoidance algorithm based on 2-D Lidar. In: 2015 IEEE International Conference on Information and Automation, pp. 1648–1653. IEEE (2015)

    Google Scholar 

  7. Zou, Z., Shi, Z., Guo, Y., Ye, J.: Object Detection in 20 years: A Survey. arXiv preprint arXiv:1905.05055 (2019)

  8. Zhao, Z.Q., Zheng, P., Xu, S.t., Wu, X.: Object detection with deep learning: a review. IEEE Trans. Neural Netw. Learn. Syst. 30(11), 3212–3232 (2019)

    Google Scholar 

  9. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  10. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  11. Wu, B., Iandola, F., Jin, P.H., Keutzer, K.: Squeezedet: unified, small, low power fully convolutional neural networks for real-time object detection for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 129–137 (2017)

    Google Scholar 

  12. Kuriakose, B., Shrestha, R., Sandnes, F.E.: Smartphone navigation support for blind and visually impaired people - a comprehensive analysis of potentials and opportunities. In: Antona, M., Stephanidis, C. (eds.) HCII 2020. LNCS, vol. 12189, pp. 568–583. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49108-6_41

    Chapter  Google Scholar 

  13. Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781–10790 (2020)

    Google Scholar 

  14. Borenstein, J., Koren, Y.: Obstacle avoidance with ultrasonic sensors. IEEE J. Robot. Autom. 4(2), 213–218 (1988)

    Article  Google Scholar 

  15. Litomisky, K.: Consumer RGB-D Cameras and their Applications. Rapport Technique, University of California, vol. 20, p. 28 (2012)

    Google Scholar 

  16. Aladren, A., López-Nicolás, G., Puig, L., Guerrero, J.J.: Navigation assistance for the visually impaired using RGB-D sensor with range expansion. IEEE Syst. J. 10(3), 922–932 (2014)

    Article  Google Scholar 

  17. Lee, Y.H., Medioni, G.: RGB-D camera based wearable navigation system for the visually impaired. Comput. Vis. Image Understand. 149, 3–20 (2016)

    Article  Google Scholar 

  18. Kuriakose, B., Shrestha, R., Sandnes, F.E.: Distance estimation methods for smartphone-based navigation support systems. In: Arai, K. (ed.) IntelliSys 2021. LNNS, vol. 295, pp. 658–673. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-82196-8_49

    Chapter  Google Scholar 

  19. Rahman, M.A., Sadi, M.S.: IoT enabled automated object recognition for the visually impaired. Comput. Meth. Programs Biomed. Update 1, 100015 (2021)

    Article  Google Scholar 

  20. Joshi, R., Tripathi, M., Kumar, A., Gaur, M.S.: Object recognition and classification system for visually impaired. In: 2020 International Conference on Communication and Signal Processing (ICCSP), pp. 1568–1572. IEEE (2020)

    Google Scholar 

  21. Afif, M., Ayachi, R., Said, Y., Pissaloux, E., Atri, M.: An evaluation of RetinaNet on indoor object detection for blind and visually impaired persons assistance navigation. Neural Process. Lett. 51(3), 2265–2279 (2020)

    Google Scholar 

  22. Noman, M., Stankovic, V., Tawfik, A.: Portable offline indoor object recognition system for the visually impaired. Cogent Eng. 7(1), 1823158 (2020)

    Google Scholar 

  23. Ramadhan, A.J.: Wearable smart system for visually impaired people. Sensors 18(3), 843 (2018)

    Article  Google Scholar 

  24. Anandan, M., Manikandan, M., Karthick, T.: Advanced indoor and outdoor navigation system for blind people using Raspberry-Pi. J. Internet Technol. 21(1), 183–195 (2020)

    Google Scholar 

  25. Hakim, H., Fadhil, A.: Indoor wearable navigation system using 2D SLAM based on RGB-D camera for visually impaired people. In: Peng, S.-L., Hao, R.-X., Pal, S. (eds.) Proceedings of First International Conference on Mathematical Modeling and Computational Science. AISC, vol. 1292, pp. 661–672. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-4389-4_60

  26. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  27. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

  28. Kuriakose, B., Shrestha, R., Sandnes, F.E.: SceneRecog: a deep learning scene recognition model for assisting blind and visually impaired navigate using smartphones. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2464–2470. IEEE (2021)

    Google Scholar 

  29. Krasin, I., et al.: OpenImages: a public dataset for large-scale multi-label and multi-class image classification. Dataset 2(3), 18 (2017)https://github.com/openimages

  30. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bineeth Kuriakose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuriakose, B., Shrestha, R., Sandnes, F.E. (2022). LiDAR-Based Obstacle Detection and Distance Estimation in Navigation Assistance for Visually Impaired. In: Antona, M., Stephanidis, C. (eds) Universal Access in Human-Computer Interaction. User and Context Diversity. HCII 2022. Lecture Notes in Computer Science, vol 13309. Springer, Cham. https://doi.org/10.1007/978-3-031-05039-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05039-8_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05038-1

  • Online ISBN: 978-3-031-05039-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics