Skip to main content

Part of the book series: Food Bioactive Ingredients ((FBC))

Abstract

The seeds of Nigella sativa L. (family Ranunculaceae) are considered to be the source of unique crude oil with nutraceutical and pharmaceutical activities. That oil is composed mainly of a fixed oil fraction (triglyceride) accompanied with a minor fraction of volatile oil and traces of phytosterols, flavonoids and saponins. This perfect mixture gave Nigella sativa crude oil its famous reputation as functional oil or nutraceutical. As the case with all plant seed oils, the crude oil of N. sativa is prone to oxidation upon storage. Therefore, different trends were developed in order to protect that oil from oxidation and prolong its shelf life. One of these trends is microencapsulation in which the oil droplets are surrounded by a hard shell or a microcapsule that protects it against adverse environmental conditions and facilitates its handling and application in food products. With the advent of nanotechnology, the crude oil or its isolated volatile oil fraction are also subjected to different nanoencapsulation techniques in order to enhance their oral bioavailability and biological activity. Based on the above mentioned, the author of this chapter will shed light on the different trends and techniques that are reported by researchers for the micro- and nanoencapsulation of the whole crude oil of N. sativa and its volatile oil fraction. Theoretical background about the principle of encapsulation in each technique will be briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

N. sativa :

Nigella sativa

References

  • Abamore, E., Tosyali, O., Bagirova, M., & Allahverdiyev, A. (2018). Nigella sativa oil entrapped polycaprolactone nanoparticles for leishmaniasis treatment. IET Nanotechnology, 12(8), 1018–1026.

    Article  Google Scholar 

  • Abbasi, S., & Amiri-Rigi, A. (2017). Microemulsions as nano-carriers for nutraceuticals: Current trends and the future outlook. EC Nutrition, 12(1), 46–50.

    Google Scholar 

  • Abedi, A., Rismanchi, M., Shahdoostkhany, M., Mohammadi, A., & Hosseini, H. (2016). Microencapsulation of Nigella sativa seeds oil containing thymoquinone by spray-drying for functional yogurt production. International Journal of Food Science and Technology, 51, 2280–2289.

    Article  CAS  Google Scholar 

  • Agbaria, R., Gabarin, A., Dahan, A., & Ben-shabat, S. (2015). Anticancer activity of Nigella sativa (black seed) and its relationship with the thermal processing and quinone composition of the seed. Drug Design, Development and Therapy, 9, 3119–3124.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alhaj, N., Shamsudin, N., Alipiah, N., Zamri, H., Bustamam, A., Ibrahim, S., & Abdullah, R. (2010). Characterization of Nigella Sativa L. essential oil-loaded solid lipid nanoparticles. American Journal of Pharmacology and Toxicology, 5(1), 52–57.

    Article  Google Scholar 

  • Al-Okbi, S., Mohamed, D., Hamed, T., & Edris, A. (2013). Potential protective effect of Nigella sativa crude oils towards fatty liver in rats. European Journal of Lipid Science and Technology, 115, 774–782.

    Article  CAS  Google Scholar 

  • Badri, W., Abdelhafed, E., Miladi, K., Baraket, A., Agusti, G., Nazari, Q., Errachid, A., Fessi, H., & Elaissari, A. (2018). Poly (ε-caprolactone) nanoparticles loaded with indomethacin and Nigella Sativa L. essential oil for the topical treatment of inflammation. Journal of Drug Delivery Science and Technology, 46, 234–242.

    Article  CAS  Google Scholar 

  • Bordoni, L., Fedeli, D., Nasuti, C., Maggi, F., Papa, F., Wabitsch, M., Caterina, R., & Gabbianelli, R. (2019). Antioxidant and anti-inflammatory properties of Nigella sativa oil in human pre-adipocytes. Antioxidants, 8, 51–62.

    Article  CAS  PubMed Central  Google Scholar 

  • Chang, C., Stone, A., & Nickerson, M. (2019). Microencapsulated food ingredients. Encyclopedia of Food Chemistry, 446–450.

    Google Scholar 

  • da Silva, P., Fries, L., Menezes, C., Holkem, A., Schwan, C., Wigmann, E., Bastos, J., & da Silva, C. (2014). Microencapsulation: Concepts, mechanisms, methods and some applications in food technology. Ciência Rural, Santa Maria, 44(7), 1304–1311.

    Article  CAS  Google Scholar 

  • Doolaanea, A., Mansor, N., Nor, N., & Mohamed, F. (2016). Co-encapsulation of Nigella sativa oil and plasmid DNA for enhanced gene therapy of Alzheimer’s disease. Journal of Microencapsulation, 33(2), 114–126.

    Article  CAS  PubMed  Google Scholar 

  • Edris, A. (2010). Evaluation of the volatile oils from different local cultivars of Nigella sativa L. grown in Egypt with emphasis on the effect of extraction method on thymoquinone. Journal of Essential Oil Bearing Plants, 3, 154–164.

    Article  Google Scholar 

  • Edris, A., Kalemba, K., Adamiec, J., & Piatkowski, M. (2016). Microencapsulation of Nigella sativa oleoresin by spray drying for food and nutraceutical applications. Food Chemistry, 204, 326–333.

    Article  CAS  PubMed  Google Scholar 

  • Edris, A., Wawrzyniak, P., & Kalemba, D. (2018). Subcritical CO2 extraction of a volatile oil-rich fraction from the seeds of Nigella sativa for potential pharmaceutical and nutraceutical applications. Journal of Essential Oil Research, 30(2), 84–91.

    Article  CAS  Google Scholar 

  • Fadini, A., Alvim, I., Ribeiro, I., Ruzene, L., DaSilva, L., Queiroz, M., Miguel, A., Chaves, F., & Rodrigues, R. (2018). Innovative strategy based on combined microencapsulation technologies for food application and the influence of wall material composition. LWT-Food Science and Technology, 91, 345–352.

    Article  CAS  Google Scholar 

  • Fang, Z., & Bhandari, B. (2012). Spray drying, freeze drying and related processes for food ingredient and nutraceutical encapsulation. In N. Garti & J. McClement (Eds.), Encapsulation technologies and delivery systems for food ingredients and nutraceuticals (Woodhead Publishing Series in Food Science, Technology and Nutrition) (pp. 73–109). Cambridge: Woodhead Publishing Ltd.

    Chapter  Google Scholar 

  • Garti, A., & Aserin, A. (2012). Micelles and microemulsions as food ingredient and nutraceutical delivery systems. In N. Garti & J. McClement (Eds.), Encapsulation technologies and delivery systems for food ingredients and nutraceuticals (Woodhead Publishing Series in Food Science, Technology and Nutrition) (pp. 211–251). Cambridge: Woodhead Publishing Ltd.

    Chapter  Google Scholar 

  • Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40, 1107–1121.

    Article  CAS  Google Scholar 

  • Goindi, S., Kaur, A., Kaur, R., Kalra, A., & Chauhan, P. (2016). Chapter 19. Nanoemulsions: An emerging technology in the food industry. In A. Grumezescu (Ed.), Emulsions nanotechnology in the agri-food industry (3rd ed., pp. 651–688). Amsterdam: Academic.

    Google Scholar 

  • Hamed, S., Shaaban, H., Ramadan, A., & Edris, A. (2017). Potentials of enhancing the physicochemical and functional characteristics of Nigella sativa oil by using the screw pressing technique for extraction. Grasas y Aceites, 68(2), e188–e196.

    Article  CAS  Google Scholar 

  • Jafari, S. (2017). Nanoencapsulation of food bioactive ingredients, principles and applications (S. Jafari, Ed., 1st ed.). London: Academic.

    Google Scholar 

  • Koshak, A., Yousif, N., Fiebich, B., Koshak, E., & Heinrich, M. (2018). Comparative immunomodulatory activity of Nigella sativa L. preparations on proinflammatory mediators: A focus on asthma. Frontiers in Pharmacology., 9, 1–11.

    Article  CAS  Google Scholar 

  • Li, Y., González, V., & Diosady, L. (2014). Chapter 38. Microencapsulation of vitamins, minerals, and nutraceuticals for food applications. In A. Gaonkar, N. Vasisht, & R. Sobel (Eds.), Microencapsulation in the food industry a practical implementation guide (pp. 501–522). Amsterdam: Academic.

    Google Scholar 

  • Loughrill, E., Thompson, S., Owusu-Ware, S., Snowden, M., Douroumis, D., & Zand, N. (2019). Controlled release of microencapsulated docosahexaenoic acid (DHA) by spray-drying processing. Food Chemistry, 286, 368–375.

    Article  CAS  PubMed  Google Scholar 

  • Majdalawieh, A., & Fayyad, M. (2016). Recent advances on the anti-cancer properties of Nigella sativa, a widely used food additive. Journal of Ayurveda and Integrative Medicine, 7, 173–180.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammed, N., Tan, C., Manap, Y., Alhelli, A., & Hussin, A. (2017a). Process conditions of spray drying microencapsulation of Nigella sativa oil. Powder Technology, 315, 1–14.

    Article  CAS  Google Scholar 

  • Mohammed, N., Hussina, A., Tana, C., Abdul Manapa, M., & Alhelli, A. (2017b). Quality changes of microencapsulated Nigella sativa oil upon accelerated storage. International Journal of Food Properties, 20(S3), S2395–S2408.

    Article  CAS  Google Scholar 

  • Mollazadeh, H., Afshari, A., & Hosseinzadeh, H. (2017). Review on the potential therapeutic roles of Nigella sativa in the treatment of patients with cancer: Involvement of apoptosis. Journal of Pharmacopuncture, 20(3), 158–172.

    Article  PubMed  PubMed Central  Google Scholar 

  • Montes, C., Villaseñor, M., & Ríos, A. (2019). Analytical control of nanodelivery lipid-based systems for encapsulation of nutraceuticals: Achievements and challenges. Trends in Food Science and Technology, 90, 47–62.

    Article  CAS  Google Scholar 

  • Nithin, N., & Priya, B. (2016). Storage stability of the encapsulated Black Cumin (Nigella Sativa L.) seed oil powder by spray drying. Indian Journal of Science, 23(82), 492–498.

    Google Scholar 

  • Ozkana, G., Francob, P., De Marcob, I., Xiaoc, J., & Capanoglua, E. (2019). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks, and applications. Food Chemistry, 272, 494–506.

    Article  CAS  Google Scholar 

  • Ozturk, B. (2017). Nanoemulsions for food fortification with lipophilic vitamins: Production challenges, stability, and bioavailability. European Journal of Lipid Science and Technology, 119, 1500539.

    Article  CAS  Google Scholar 

  • Pellicer, J., Fortea, M., Trabal, J., Rodríguez-López, M., Gabaldón, J., & Núñez-Delicado, E. (2019). Stability of microencapsulated strawberry flavour by spray drying, freeze drying and fluid bed. Powder Technology, 347, 179–185.

    Article  CAS  Google Scholar 

  • Peng, S., Li, Z., Zou, L., Liu, W., Liu, C., & McClements, J. (2018). Enhancement of curcumin bioavailability by encapsulation in sophorolipid-coated nanoparticles: An in vitro and in vivo study. Journal of Agriculture and Food Chemistry, 66(6), 1488–1497.

    Article  CAS  Google Scholar 

  • Periasamy, V., Athinarayanan, J., & Alshatwi, A. (2016). Anticancer activity of an ultrasonic nanoemulsion formulation of Nigella sativa L. essential oil on human breast cancer cells. Ultrasonics Sonochemistry, 31, 449–455.

    Article  CAS  PubMed  Google Scholar 

  • Ray, S., Raychaudhuri, U., & Chakraborty, R. (2016). An overview of encapsulation of active compounds used in food products by drying technology. Food Bioscience, 13, 76–83.

    Article  CAS  Google Scholar 

  • Rousseau, D., Rafanan, R., & Yada, R. (2019). Microemulsions as nanoscale delivery systems. In M. Moo-Young (Ed.), Comprehensive biotechnology (3rd ed., pp. 731–738). Academic.

    Google Scholar 

  • Rushmi, Z., Akter, N., Mow, R., Afroz, M., Kazi, M., Matas, M., Rahman, M., & Shariare, M. (2017). The impact of formulation attributes and process parameters on black seed oil loaded liposomes and their performance in animal models of analgesia. Saudi Pharmaceutical Journal, 25, 404–412.

    Article  PubMed  Google Scholar 

  • Shaaban, H., Sadek, Z., Edris, A., & Saad-Hussein, A. (2015). Analysis and antibacterial activity of Nigella sativa essential oil formulated in microemulsion system. Journal of Oleo Science, 64(2), 223–232.

    Article  CAS  PubMed  Google Scholar 

  • Shaikh, J., Ankola, D., Beniwal, V., Singh, D., & Kumar, M. (2009). Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. European Journal of Pharmaceutical Sciences, 37, 223–230.

    Article  CAS  PubMed  Google Scholar 

  • Sharif, H., Abbas, S., Majeed, H., Safdar, W., Shamoon, M., Khan, M., Shoaib, M., Raza, H., & Haider, H. (2017). Formulation, characterization and antimicrobial properties of black cumin essential oil nanoemulsions stabilized by OSA starch. Journal of Food Science and Technology, 54(10), 3358–3365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shishir, M., Xie, L., Sun, C., Zheng, X., & Chen, W. (2018). Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends in Food Science & Technology, 78, 34–60.

    Article  CAS  Google Scholar 

  • Souza, A., Hidalgo-Chávezb, D., Pontesc, S., Gomesc, F., Cabralc, L., & Tonon, R. (2018). Microencapsulation by spray drying of a lycopene-rich tomato concentrate: Characterization and stability. LWT-Food Science and Technology, 91, 286–292.

    Article  CAS  Google Scholar 

  • Spernath, A., & Aserin, A. (2006). Microemulsions as carriers for drugs and nutraceuticals. Advance in Colloid and Interface Science, 128–130, 47–64.

    Article  CAS  Google Scholar 

  • Tulukcu, F. (2011). A comparative study on fatty acid composition of black cumin obtained from different regions of Turkey, Iran and Syria. African Journal of Agricultural Research, 6, 892–895.

    Google Scholar 

  • Walker, R., Deckera, E., & McClements, D. (2015). Development of food-grade nanoemulsions and emulsions for delivery of omega-3 fatty acids: Opportunities and obstacles in the food industry. Food Function, 6(1), 42–55.

    Article  PubMed  Google Scholar 

  • Zhu, J., & Huang, Q. (2019). Nanoencapsulation of functional food ingredients. Advances in Food and Nutrition Research, 88, 129–165.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Edris, A.E. (2021). Micro- and Nano-encapsulation of Nigella sativa Oil. In: Fawzy Ramadan, M. (eds) Black cumin (Nigella sativa) seeds: Chemistry, Technology, Functionality, and Applications. Food Bioactive Ingredients. Springer, Cham. https://doi.org/10.1007/978-3-030-48798-0_24

Download citation

Publish with us

Policies and ethics