Skip to main content

Advertisement

Log in

Influence of Extracellular Vesicles of the Follicular Fluid on Morphofunctional Characteristics of Human Sperm

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied the effect of extracellular vesicles of the follicular fluid on morphofunctional characteristics of human spermatozoa using CASA (computer-assisted sperm analysis) analytical system. The vesicles were obtained by sequential centrifugation at different rotational speeds and frozen at -80°C in the Sydney IVF Gamete Buffer medium. The sperm fraction was isolated from the seminal fluid of 21 patients aged 27-36 years by differential centrifugation in a density gradient. The precipitate was suspended in Sydney IVF Gamete Buffer to a concentration of 106/ml and incubated with vesicles (1:2) at 37°C in a CO2 incubator for 30 min and 1 h. Sperm fraction incubated without vesicles served as the control. After incubation, some sperm samples were centrifuged at 700g for 5 min and fixed in 2.5% glutaraldehyde in 0.1 M buffer for transmission electron microscopy. After 30-min and 1-h incubation, the progressive and total sperm motility improved, the curvilinear and linear velocity of spermatozoa did not change significantly. Incubation with vesicles significantly changed the trajectory of sperm movement, which can attest to an increase in their hyperactivation and, probably, fertilizing capacity. Analysis of the effect of extracellular vesicles of follicular fluid on sperm motility will help to improve the effectiveness of assisted reproductive technology programs with male infertility factor by improving sperm characteristics in patients with asthenozoospermia and increasing the fertilizing ability of the sperm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kraevaya EE, Silachev DN, Beznoshchenko OS, Goryunov KV, Shevtsova JA, Khutornenko AA, Makarova NP, Krechetova LV, Ivanets TY, Poletaev AV, Kalinina EA, Dolgushina NV, Sukhikh GT. Effect of extracellular vesicles of follicular fluid on ovarian coagulation hemostasis. Problemy Reproduktsii. 2020;26(2):18-26. doi: https://doi.org/10.17116/repro20202602118. Russian.

  2. Al-Dossary AA, Bathala P, Caplan JL, Martin-DeLeon PA. Oviductosome-sperm membrane interaction in cargo delivery: Detection of fusion and underlying molecular players using three-dimensional super-resolution structured illumination microscopy (SR-SIM). J. Biol. Chem. 2015;290(29):17710- 17723. doi: https://doi.org/10.1074/jbc.M114.633156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Al-Dossary AA, Strehler EE, Martin-Deleon PA. Expression and secretion of plasma membrane Ca2+-ATPase 4a (PMCA4a) during murine estrus: association with oviductal exosomes and uptake in sperm. PLoS One. 2013;8(11):e80181. doi: https://doi.org/10.1371/journal.pone.0080181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Almiñana C, Corbin E, Tsikis G, Alcântara-Neto A.S, Labas V, Reynaud K, Galio L, Uzbekov R, Garanina A. S, Druart X, Mermillod P. Oviduct extracellular vesicles protein content and their role during oviduct-embryo cross-talk. Reproduction. 2017;154(3):153-168. doi: https://doi.org/10.1530/REP-17-0054

    Article  PubMed  Google Scholar 

  5. Ambekar AS, Nirujogi RS, Srikanth SM, Chavan S, Kelkar DS, Hinduja I, Zaveri K, Prasad TS, Harsha HC, Pandey A, Mukherjee S. Proteomic analysis of human follicular fluid: a new perspective towards understanding folliculogenesis. J. Proteomics. 2013;87:68-77. doi: https://doi.org/10.1016/j.jprot.2013.05.017

    Article  CAS  PubMed  Google Scholar 

  6. Candenas L, Chianese R. Exosome composition and seminal plasma proteome: a promising source of biomarkers of male infertility. Int. J. Mol. Sci. 2020;21(19):7022. doi: https://doi.org/10.3390/ijms21197022

    Article  CAS  PubMed Central  Google Scholar 

  7. Chen MS, Tung KS, Coonrod SA, Takahashi Y, Bigler D, Chang A, Yamashita Y, Kincade PW, Herr JC, White JM. Role of the integrin-associated protein CD9 in binding between sperm ADAM 2 and the egg integrin alpha6beta1: implications for murine fertilization. Proc. Natl Acad. Sci. USA. 1999;96(21):11830-11835. doi: https://doi.org/10.1073/pnas.96.21.11830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. da Silveira JC, Carnevale EM, Winger QA, Bouma GJ. Regulation of ACVR1 and ID2 by cell-secreted exosomes during follicle maturation in the mare. Reprod. Biol. Endocrinol. 2014;12:44. doi: https://doi.org/10.1186/1477-7827-12-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. da Silveira JC, Veeramachaneni DN, Winger QA, Carnevale EM, Bouma GJ. Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biol. Reprod. 2012;86(3):71. doi: https://doi.org/10.1095/biolreprod.111.093252

    Article  CAS  PubMed  Google Scholar 

  10. Dun MD, Smith ND, Baker MA, Lin M, Aitken RJ, Nixon B. The chaperonin containing TCP1 complex (CCT/TRiC) is involved in mediating sperm-oocyte interaction. J. Biol. Chem. 2011;286(42):36875-36887. doi: https://doi.org/10.1074/jbc.M110.188888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fabbri R, Porcu E, Lenzi A, Gandini L, Marsella T, Flamigni C. Follicular fluid and human granulosa cell cultures: influence on sperm kinetic parameters, hyperactivation, and acrosome reaction. Fertil. Steril. 1998;69(1):112-117. doi: https://doi.org/10.1016/s0015-0282(97)00421-4

    Article  CAS  PubMed  Google Scholar 

  12. Ferraz MAMM, Carothers A, Dahal R, Noonan MJ, Songsasen N. Oviductal extracellular vesicles interact with the spermatozoon’s head and mid-piece and improves its motility and fertilizing ability in the domestic cat. Sci. Rep. 2019;9(1):9484. doi: https://doi.org/10.1038/s41598-019-45857-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Getpook C, Wirotkarun S. Sperm motility stimulation and preservation with various concentrations of follicular fluid. J. Assist. Reprod. Genet. 2007;24(9):425-448. doi: https://doi.org/10.1007/s10815-007-9145-6

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hernández Alvarado SR, Guzmán-Grenfell AM, Hicks Gómez JJ. Communication of gametes at distance. Chemotaxis and chemokinesis in spermatozoa in mammals. Ginecol. Obstet. Mex. 1995;63:323-327.

    PubMed  Google Scholar 

  15. Jeon BG, Moon JS, Kim KC, Lee HJ, Choe SY, Rho GJ. Follicular fluid enhances sperm attraction and its motility in human. J. Assist. Reprod. Genet. 2001;18(8):407-412. doi: https://doi.org/10.1023/a:1016674302652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kenigsberg S, Wyse BA, Librach CL, da Silveira JC. Protocol for exosome isolation from small volume of ovarian follicular fluid: evaluation of ultracentrifugation and commercial kits. Methods Mol. Biol. 2017;1660:321-341. doi: https://doi.org/10.1007/978-1-4939-7253-1_26

    Article  CAS  PubMed  Google Scholar 

  17. Krausz C, Gervasi G, Forti G, Baldi E. Effect of plateletactivating factor on motility and acrosome reaction of human spermatozoa. Hum. Reprod. 1994;9(3):471-476. doi: https://doi.org/10.1093/oxfordjournals.humrep.a138529

    Article  CAS  PubMed  Google Scholar 

  18. Machtinger R, Laurent LC, Baccarelli AA. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum. Reprod. Update. 2016;22(2):182-193. doi: https://doi.org/10.1093/humupd/dmv055

    Article  CAS  PubMed  Google Scholar 

  19. Murdica V, Giacomini E, Alteri A, Bartolacci A, Cermisoni GC, Zarovni N, Papaleo E, Montorsi F, Salonia A, Viganò P, Vago R. Seminal plasma of men with severe asthenozoospermia contain exosomes that affect spermatozoa motility and capacitation. Fertil. Steril. 2019;111(5):897-908.e2. doi: https://doi.org/10.1016/j.fertnstert.2019.01.030

    Article  CAS  PubMed  Google Scholar 

  20. Navakanitworakul R, Hung WT, Gunewardena S, Davis JS, Chotigeat W, Christenson LK. Characterization and small RNA content of extracellular vesicles in follicular fluid of developing bovine antral follicles. Sci. Rep. 2016;6:25486. doi: https://doi.org/10.1038/srep25486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ralt D, Goldenberg M, Fetterolf P, Thompson D, Dor J, Mashiach S, Garbers DL, Eisenbach M. Sperm attraction to a follicular factor(s) correlates with human egg fertilizability. Proc. Natl Acad. Sci. USA. 1991;88(7):2840-2844. doi: https://doi.org/10.1073/pnas.88.7.2840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ralt D, Manor M, Cohen-Dayag A, Tur-Kaspa I, Ben-Shlomo I, Makler A, Yuli I, Dor J, Blumberg S, Mashiach S. et al. Chemotaxis and chemokinesis of human spermatozoa to follicular factors. Biol. Reprod. 1994;50(4):774-785. doi: https://doi.org/10.1095/biolreprod50.4.774

    Article  CAS  PubMed  Google Scholar 

  23. Sang Q, Yao Z, Wang H, Feng R, Wang H, Zhao X, Xing Q, Jin L, He L, Wu L, Wang L. Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J. Clin. Endocrinol. Metab. 2013;98(7):3068-3079. doi: https://doi.org/10.1210/jc.2013-1715.

    Article  CAS  PubMed  Google Scholar 

  24. Schuh K, Cartwright EJ, Jankevics E, Bundschu K, Liebermann J, Williams JC, Armesilla AL, Emerson M, Oceandy D, Knobeloch KP, Neyses L. Plasma membrane Ca2+ ATPase 4 is required for sperm motility and male fertility. J. Biol. Chem. 2004;279(27):28 220-28 226. doi: https://doi.org/10.1074/jbc.M312599200

    Article  CAS  Google Scholar 

  25. Shen X, Liu X, Zhu P, Zhang Y, Wang J, Wang Y, Wang W, Liu J, Li N, Liu F. Proteomic analysis of human follicular fluid associated with successful in vitro fertilization. Reprod. Biol. Endocrinol. 2017;15(1):58. doi: https://doi.org/10.1186/s12958-017-0277-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Simon C, Greening DW, Bolumar D, Balaguer N, Salamonsen LA, Vilella F. Extracellular vesicles in human reproduction in health and disease. Endocr. Rev. 2018;39(3):292-332. doi: https://doi.org/10.1210/er.2017-00229

    Article  PubMed  Google Scholar 

  27. Visconti PE. Sperm bioenergetics in a nutshell. Biol. Reprod. 2012;87(3):72. doi: https://doi.org/10.1095/biolreprod.112.104109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Williams M, Hill CJ, Scudamore I, Dunphy B, Cooke ID, Barratt CL. Sperm numbers and distribution within the human fallopian tube around ovulation. Hum. Reprod. 1993;8(12):2019- 2026. doi: https://doi.org/10.1093/oxfordjournals.humrep.a137975

    Article  CAS  PubMed  Google Scholar 

  29. Yao Y, Ho P, Yeung WS. Effects of human follicular fluid on the capacitation and motility of human spermatozoa. Fertil. Steril. 2000;73(4):680-686. doi: https://doi.org/10.1016/s0015-0282(99)00637-8

    Article  CAS  PubMed  Google Scholar 

  30. Zhang X, Song D, Kang H, Zhou W, Chen H, Zeng X. Seminal plasma exosomes evoke calcium signals via the CatSper channel to regulate human sperm function. BioRxiv. 2020. doi: https://doi.org/10.1101/2020.05.21.094433

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Sysoeva.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 3, pp. 176-185, September, 2021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sysoeva, A.P., Makarova, N.P., Silachev, D.N. et al. Influence of Extracellular Vesicles of the Follicular Fluid on Morphofunctional Characteristics of Human Sperm. Bull Exp Biol Med 172, 254–262 (2021). https://doi.org/10.1007/s10517-021-05372-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-021-05372-4

Key Words

Navigation