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Abstract 
 

The fast evolving nature and the growing 

complexity of modern offensive techniques used in 

Advanced Persistent Threats attacks call for 

innovative approaches for defense techniques. The 

ability of modern offensive operations to acquire a 

foothold and then expand an infection inside the 

victim’s local area network, usually referred to as 

lateral movement activity, is significantly critical. 

Not only a distributed monitoring infrastructure is 

necessary to overcome the lack of a single network 

point for detection (opposed to the traditional 

network perimeter defense relying on outbound 

network intrusion detection systems), but also new 

signatures appear necessary to model the stealthy 

and complex behavior of offensive lateral movement 

activities. In this paper we demonstrate how to 

effectively use eXtended Finite State Machine 

patterns to face a set of commonly used lateral 

movement techniques. With reference to real world 

lateral movement attacks (including those ones 

based on IP spoofing), we show how the relevant 

detection signatures can be gathered and formally 

modeled, also employing a widespread distributed 

security architecture. Numerical results on real 

world traces show the effectiveness of the proposed 

approach in avoiding false positives. 
 

1. Introduction 
 

Advanced Persistent Threats (APTs) are the 

emerging cyber threats well known for using 

complex attack techniques and concealing their 

presence in the network for long periods of time [1]. 

Despite the crucial attention and intense research 

effort spent by the cyber-security community, the 

time it takes to detect APTs is still measured in days 

or even months, with an average [2] of as much as 

six months. The main reason for this detection gap is 

the sophistication of infection and evasion 

techniques used by attackers, in most cases operating 

without any specific automatic tool (easily 

detectable, as traditional virus). 

An aspect that makes it hard to defend against APTs 

is the stealth way in which such attacks spread. Most 

often, APTs first limit to acquire an internal foothold 

in a target network, by typically finding a single 

weak spot and exploiting it to gain access to the 

network [3]. Once inside, APTs start to spread all 

around the network, collecting and exfiltrating  

 

 

 

sensitive data. In spite of such a fundamentally 

different behavior with respect to the more 

traditional threats, network operators and target 

companies are still protecting their networks using 

defense  techniques primarily targeting the protection 

of the network perimeter, e.g. via outbound Network 

Intrusion Detection Systems (NIDS). Indeed, a report 

from the security company Fireye [3] suggests that 

companies still spend more than $5 billion on 

traditional security measures, whereas, as reported in 

[4], they often completely neglect the internal 

network protection. 
Unfortunately, the detection of these internal 

insidious activities is arduous for several reasons 

such as the granularity of controls to be performed 

and, above all, the complexity of indicators of 

compromise to be implemented, because of the use 

of administration-like operations and the consequent 

high false positive rate. 
We think that an effective internal network 

defense, capable of detecting the spreading of 

infections via lateral movements, requires significant 

advances in two complementary directions. The first 

direction is related to the monitoring infrastructure. 

In fact, rather than relying on a centralized outbound 

NIDS, new generation monitoring systems should 

rely on the analysis of network-level patterns 

through a distributed monitoring architecture, 

employing multiple (and ideally collaborative) 

probes in the form of software agents widely 

available in the network, in principle down to one 

single probe per device. Note that we foster an 

approach based on the analysis of network-level 

events, as this holds the promise to more promptly 

detect anomalies and end-point misbehavior if 

compared to the current log-based host analysis (e.g. 

[5,6]). The second direction, and the main 

contribution of this paper, consists of identifying new 

attack signatures which are amenable to network-

level analysis and support scalable operation. In 

fact, the obvious shortcoming of a network-level 

analysis, and to a greater extent of a widespread 

distributed infrastructure with multiple vantage 

points, is the huge amount of traffic to inspect and 

the inherent complexity in identifying malicious 

patterns in it. Rule-based approaches (Snort-like [7]), 

appear too simple to properly model and characterize 

complex behaviors, such as those involved in APT’s 

internal infection spreads. Current literature 

approaches, which rely on Snort-like IDSs [8], 

usually take a two-step approach and thus lose the 
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ability of being able to detect and respond to threats 

in (near) real time: they log, in real time, network 

events gathered from Snort probes, and then only 

later they can parse offline the network logs to 

identify malicious patterns. 
The crucial questions, addressed in this paper, are 

thus: how to formally model realistic complex 

patterns, such as those involved in offensive lateral 

movements, in a way that they are amenable to be 

detected via a packet-by-packet analysis? how to 

correlate the warnings generated by the widespread 

probes in order to detect complex distributed 

attacks?  Our answer resides in a monitoring 

architecture (Section 3), whose single agents, 

intended as local instances of the scalable StreaMon 

[9] probe, are based on the notion of finite-state-

machine-based signature, i.e. signatures which are 

still based on the analysis of low-level packet events 

(expressible via the classic rules). It is possible if 

they are able to explicitly model the attack behavior 

change in time, through the concept of “attack state”, 

and to formalize such evolution. In addition, in order 

to detect complex distributed threats (especially 

those ones aiming at anonimizing the offensive 

operations), all the warnings are centralized and 

correlated. The effectiveness of the proposed 

architecture is evaluated by modeling lateral 

movements of real threat, by step-by-step showing 

(Section 4) how it can be formally modeled in a 

stateful composition of rules which can then be 

executed over the StreaMon probe [9]. A discussion 

of related works is then provided in Section 5, while 

conclusive remarks and further possible evolutions 

of this work are summarized in Section 6. 
 

2. State of the Art on advanced cyber 

threats 
 

The traditional defense approach against cyber 

threats primarily targets the protection of the network 

perimeter by means of outbound NIDSs. Such a 

monitoring topology allows the detection of 

malicious operations between the infected host inside 

the network (red host in Figure 1, most often called 

pivot) and the external Command & Control entities, 

but neglects the internal malicious connections 

between the pivot and the other victim hosts. This is 

a limitation in case of modern APTs, which, once 

gathered a foothold inside the network, aim at 

spreading the infection inside the LAN, taking 

control of other internal hosts (orange hosts in Figure 

1) without any additional external interaction. 

 
Figure 1. APT scenario 

The defense against the lateral movements is 

complex both at network and host level. In particular, 

the security devices deployed for this purpose are 

called Intrusion Detection System (IDS) and can be 

host-based (Host IDS - HIDS) or network-based 

(NIDS). The first type is a system installed on single 

host, mainly dedicated to the monitoring of files 

integrity, application logs and system calls, while the 

NIDS attempts to discover any unauthorized access 

to a computer network by capturing the network 

traffic [10]. Almost all the detection techniques used 

for lateral movements are based on the Windows 

event logs analysis, through HIDSs and centralized 

SIEM applications. In [5] and [6], for example, in 

order to detect a pass-the-hash attack it is suggested 

to implement an host based detection process (using 

the Windows and antivirus logs in order to monitor 

the authentication events - comparing the results 

against an user and/or IP approved list); in addition, a 

network user habit based detection approach is also 

proposed (once created a baseline of normal system  

behavior, the detection techniques look for anomalies 

on the number of connection in a short period of time 

on a specific port). A similar and wider approach is 

introduced in the Microsoft guide dedicated to the 

mitigation of the pass-the-hash attack [11], where 

they propose a complete list of anomalous user 

behaviors, which can be interpreted as stolen 

credential use, and the relative Windows log events. 

This kind of host-based analysis can be 

performed both in a decentralized and in a 

centralized way, using SIEM solutions whose high 

performance allows to implement complex statistical 

algorithms, as in [12]. For the detection of such 

threats, HIDS approaches are hence preferred to the 

NIDS ones, probably because of the use of licit 

protocols and administration commands, although a 

network analysis can be performed at run time and 

integrated with Software Defined Network devices 

for mitigation. One example of NIDS detection for 

this threat is proposed in [13] and is based on the 

conversion of the Windows log indicator. In 

particular, indicators of lateral movement proposed 

in (Windows event type and relative information) are 

converted in SNORT format [7] using regular 

expressions and text search. A mixed approach, 

similar to the one of this article, is provided by [4]: 

the detection algorithm is based on the SMB 

authentication process chain in a Windows 

architecture and performs DPI in order to extract 

credentials. 

In this paper we focus on the detection of these 

threats at network level, which is complex for many 

reasons. First, there is not anymore a single point in 

the network such as an outbound NIDS which 

permits to monitor malicious traffic activities. 

Second, the attacker employs multiple different 

techniques in the lateral movement phase. Finally, 

such techniques are engineered to hide among 

legitimate traffic and activities, and use standard 

administration-like operations in this phase. Through 

the usage of such methods it is difficult to detect the 

lateral movement, because benign and malicious 
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utilization of these methods looks similar and 

therefore distinction is complex [14]. 

A suitable defense against lateral movements thus 

must face two complementary needs. First, the 

network monitoring architecture must also spread 

inside the LAN via the monitoring agents widespread 

located inside the network. Moreover, since lateral 

movements are characterized by an administration-

like traffic (most often derived by human-driven 

operations), whose single packets are legitimate 

events, to prevent false alarms it is necessary to 

detect how such events occur (and change) in time. 

As discussed in the next section, we suggest relying 

on state machines, executable as signatures to be 

implemented in deployable version of the StreaMon 

probe [9], called D-Streamon [15]. 

 

3. Proposed Monitoring Architecture 
 

The implementation of a widespread monitoring 

infrastructure requires to deploy and to manage a 

high number of NIDS agents. Without an automated 

process, a manual approach does not scale in large 

networks and in general it is a cumbersome and error 

prone task. For this reason, we create a capillary 

monitoring architecture as shown in Figure 2, based 

on an extensive deployment of lightweight NIDS 

agents at host level, whose events/warning analysis 

is centralized by a NIDS Manager, which can 

correlate data and trigger mitigation actions. 
 

3.1  NIDS Agent 
 

Offensive lateral movements are very complex to 

be detected with a traditional NIDS monitoring 

approach, not only for an architecture issue 

(perimeter monitoring vs distributed monitoring), but 

also for the difficulty to summarize such attacks into 

a single matching rule. Despite the growing interest 

in behavioral-based NIDSs, designed to 

automatically identify “deviations” from the normal 

behavior of a host or network [16], the need for their 

extensive training in conjunction with their statistical 

(non-deterministic) operation implies that signature-

based NIDSs still play a dominant role in the NIDS 

market. The key problem in signature-based NIDS is 

the appropriate definition of signatures for the 

variety of threats recognizable by the system. 

Emerging threats in lateral movements and APT 

scenarios are usually very complex, and are hardly 

summarized into a single matching rule. Rather, they 

do encompass a multiplicity of serial steps that, if 

taken alone and detected with atomic IOC by a 

stateless NIDS, could give many false alarms. 

 

 
Figure 2. Monitoring architecture 

 

To address such a problem, we propose to 

incorporate the “state” of a threat into a formal 

model of the threat signature, so that the detection of 

different atomic IOCs can be employed at different 

“stages” of the threat’s evolution (summarized by 

explicit states). It readily follows that an IOC which 

could be normal or legitimate at a given stage, 

becomes an indicator of an ongoing attack only when 

it happens at a different stage, significantly reducing 

the false positives.  

To our surprise, only limited research work has 

addressed the goal of devising stateful signatures. 

For instance, [17] promotes such an approach, but 

restricts it only to layer 3 rules. Conversely, the 

StreaMon probe proposed in [9] provides a 

monitoring probe architecture capable of executing 

and evolving state-machine-based signatures, but 

gives only a very limited insight on how to model 

real world threats and whether a state-machine-based 

signature model is actually suitable for this task. 

In [18], we proposed to model behavioral pattern 

signatures as state diagrams which permit the 

programmer to both formalize the notion of “attack 

state”, as well as define, for each state, the rules 

which model the state evolution in the detection 

process. In details, a finite-state-machine-based 

signature is expressed in terms of: 

 entities: the entity to which as time-varying “state” 

is associated; it can be a single entity, such as a 

target IP address, or a pair, such as [IP attacker, IP 

victim]; 

 states: for each entity, it formalizes an “attack 

state” and it associates to each state a possibly 

different set of features (events or conditions) that 

shall be monitored. Note that different states may 

entail the monitoring of different events; 

 state transitions: similarly, for each state, one or 

more state transition rules are associated, again 

expressed as a combination of events and 

conditions. This permits to formally specify how 

the state shall evolve. 

 actions: once a transition state is executed, the 

finite-state machine can also perform actions, such 

as changing a variable (e.g. counter) or giving a 

warning to a security alerts collector. 

Once the programmer has identified the set of 

attack states, the main modeling task consists in 

associating state transitions to matching rules, 

expressed as a Boolean predicate on events  or 

conditions (as defined below). In this paper we will 
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adopt the notation and syntax shown in the table 

below. 

Transition from State#N to State#M: 
(Event A OR Event B) AND Condition C 

where: 
- Event A: description and indicator of the event A 
- Event B: description and indicator of the event B 
- Cond.C: description and indicator of the 

condition C 
• Action: description of the action 

 

An event refers to information that can be 

detected from the packets, including both 

information gathered from the packet header as well 

as information eventually extracted from the packet 

payload using Deep Packet Inspection (DPI). A 

condition refers to the test of logical operations on 

collected statistics associated to the entity and/or 

state (e.g. event counter greater than a threshold, 

communication direction, etc.). Finally, the signature 

developer may optionally associate an action to each 

state transition (for instance, send an alert or reset a 

counter). 
Such pattern are then implemented as eXtended 

Finite State Machine (XFSM) signatures for 

StreaMon [9] probe, which offers elementary stream-

based traffic analysis primitives (e.g. feature 

extraction, parsing, statistics collection, correlation, 

etc.), as well as Deep Packet Inspection (DPI) 

functionalities for particular protocols. In particular, 

for the proposed capillary and distributed monitoring 

architecture, we used a lightweight version of 

StreaMon [9], called D-StreaMon [15], conceived as 

distributed Network Functional Virtualization (NFV) 

solution. The events/warning generated at host level 

by the NIDS agents are sent to the Manager over a 

publish/subscribe ZeroMQ [19] architecture, 

allowing the asynchronous dissemination of 

warnings/alerts. 
 

3.2. NIDS Manager 
 

The Manager performs different tasks. First, it is 

the master of D-StreaMon architecture and it is 

committed to initialize the probes, in terms of 

signatures to be detected. It is also the brain of the 

security infrastructure able to receive the 

asynchronous events from the NIDS substrate. Once 

the warnings are sent by a single NIDS, the 

aggregated analysis can be performed in several 

ways, according to the attacks that need to be 

detected, using statistical or deterministic 

approaches. Finally, once an attack is clearly 

detected and attributed, the NIDS Manager triggers 

mitigation actions, managed by the Mitigation 

orchestrator, which can be integrated also in a 

Software Defined Network (SDN) architecture. 
 

4. Use Cases of Advanced Detection 
 

Once such capillary monitoring capability is 

available, it is possible to define and implement a 

variety of detection logics, which allow to 

adequately model most of malicious internal 

activities. In particular, in addition to the detection 

which can be implemented at host level, we propose 

to aggregate and correlate the events/warnings 

generated at host level, in order to detect, identify 

and attribute more complex attacks, most often 

aiming at evading the security monitoring checks. 
   

4.1. Complex behavioral signatures for 

lateral movements 
 

As explained in Section 2, the sophistication of 

APTs is always increasing: in order to perform their 

malicious tasks, the attackers continually enhance the 

offensive techniques, implementing new way to 

silently spread all around the victim LAN and fulfill 

the objectives. In Windows domains, most often the 

lateral movements are based on administrative 

commands, both to deceive the network security 

analysts and to exploit the powerful built-in 

functionalities.  

In [18, 20] we show how to use XFSM 

signatures to effectively model such threats. 

PSEXEC was the key case study used [18] to prove 

the effectiveness of the XFSM signatures. It is a 

widely used technique, which enables the remote 

control of a host, automatizing the process of 

copying a software on a shared directory of a second 

host and then remotely executing it as a service, 

exploiting the Server Message Block (SMB) and 

Remote Procedure Call (RPC) protocols 

functionalities.  

In order to identify and then model the effective 

signatures, we analyzed noise-less traffic samples 

containing the patterns of interest. In our case, we 

created a virtual environment, representing a basic 

two-hosts (one WinXP and one Win7) victim local 

Domain based on Windows Active Directory, and we 

used an attacker Linux Kali Virtual Machine. After 

having performed many times the offensive activities 

on the victims, the traffic extracted from PCAPs was 

firstly visually analyzed through the Message 

Sequence Chart (MSC) representation, initially 

developed by the International Telecommunication 

Union as a requirement specification of protocols. 

This representation is useful for extracting 

patterns since it gives an overview of the message 

exchange among communicating entities, 

considering order of messages and time constraints. 

As an example, Figure 3 shows the network pattern 

of a SMB authentication failure, extracted from a 

PCAP containing a SMB brute force attack 

(afterwards better explained). 
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Figure 3. MSC of SMB Authentication Failure 

In order to interpret this chart, it is necessary to 

understand how the SMB protocol works. The SMB 

packet header contains the command to be executed 

(expressed as an hex code), which is appended to a 

command-related payload. For example, with 

reference to the “Session Setup AndX Request” 

command shown in Figure 3, at a fixed position in 

the header it is possible to extract the 

SMB_Command (“0x73” for SMB and “0x0001” for 

SMB2) or the ResponseFlag (“0” for request packet 

and “1” for the response one), while in the request 

packet payload the credentials are included too. 

Once modeled a PSEXEC attack, we analyzed a 

broader set of lateral movement threats used by an 

attacker to spread infections inside the victim LANs. 

In particular, we formally modeled the threats listed 

in Tab.1 (used by real APTs) as XFSM signatures 

and validated their effectiveness by simulation. 
 

Table 1. Lateral movements 

Branch Lateral movement 
0 → 0.1 → 0 SMB Brute force 

0 → 2.a4 SMB session creation, malicious file upload, 
service creation and start 

0 → 2.a5 PSEXEC 

0 → 2.b4 
SMB session creation, malicious file upload, 
victim local time acquisition, scheduled task 

creation 
0 → 1.b2 Scheduled task enumeration 
0 → 1.c2 Service enumeration 
0 → 1.d Directory listing 
0 → 1.e File copy 
0 → 1.f SMB session delete 

 

The single signatures were then integrated in a 

single overall XFSM signature, which can be 

considered as a complex cyber detection decision 

tree, shown in Figure 4. 

Every branch models a particular offensive 

technique, whose XFSM signature can share state 

and transitions with others. In particular, with 

reference to Figure 4, the transition 0→1 refers to the 

remote authentication event inside a LAN, consisting 

in the creation of a SMB session. 

 
Figure 4. Complex behavioral signatures for lateral 

movements 

 

For such operation, the attackers must 

authenticate (tr. 0→0.1); in case of valid credentials, 

the session is created and the attacker can access the 

victim resources (tr. 0.1→1), otherwise an 

authentication error is sent to the attacker (tr. 

0.1→0). In such conditions, a SMB brute force can 

hence be modeled as a chain of such events. Once 

the attacker is authenticated, he can remotely 

perform many activities on the victim, such as 

executing commands, gathering information about 

the processes, listing and exfiltrating data, etc. We 

analyzed a subset of the lateral movements widely 

used by real APTs, only in the Windows XP case 

(SMB version 1); the same approach is applicable to 

the successive SMB versions, specifying the relative 

SMB command name and hex values.  

Considering the possibility of remotely 

controlling the victim, as previously anticipated, we 

firstly considered the PSEXEC technique (from tr.0 

to tr. 2.a5), which automatically allows to create the 

SMB session, to upload a malicious software in the 

victim and to launch it as a new service. In order to 

detect this attack it is necessary to interpret the SMB 

commands, through DPI (e.g. in case the SMB pipe 

“svcctl” is invoked, it means that the attacker is 

trying to interact with the Windows process 

“services.exe”, responsible of the services 

management inside the operating system, and then 

the protocol SVCCTL is going to be used). 
A similar attack can be manually performed, 

using Windows administration commands: once 

authenticated using SMB functionalities (“net use” 

command), the attacker uploads a malicious software 

on the victim host (e.g. at “C:\..\mw.exe” path), 

creates a new Windows service connected to it (“sc 

\\IP create maliciousService binpath= C:\..\mw.exe”) 

and then launches it (“sc \\IP start 

maliciousService”). These manual operations can be 

detected by means of a stateful signature (from tr.0 to 

tr. 2.a4), similar to the PSEXEC one. In particular, at 

2.a2 state it is possible to identify if the attack is 

performed with the PSEXEC automatic tool or 

manually in fact, in the first case, since it is an 

automated attack, the creation and the execution of 
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the service is performed invoking the SMB pipe 

“svcctl” just once, while in the second case it is 

invoked every time the “sc” command is used. 

Therefore, the transition 2.a2→2.a3 can be modeled 

as follows: 
 

Transition from State#2.a2 to State#2.a3: 
(Ev.A OR Ev.B) AND Cond.C AND Cond.D 

where: 
- Event A: SMB Com NT Create AndX (SMB 
Command="0x2a") 
- Event B: SMB Com Open AndX (SMB Command="0x2d") 
- Cond.C: Request packet (SMB ResponseFlag=”0”) 
- Cond.D: Pointed resource related to SVCTTL session 

(“SVCCTL” string in SMB Path) 
 

 

while 2.a3→2.a4 is the same as 2.a2→2.a5. 
Another way to remotely execute a tool in 

Windows platform is to create a scheduled task by 

means of the “at” command. In this case, once the 

attacker has created a SMB session and uploaded the 

malicious software (e.g. at “C:\..\mw.exe” path), he 

acquires the local victim time (“net \\IP time”) and 

then schedule to execute the malware a few seconds 

after (“at \\IP C:\..\mw.exe”). Similarly to the 

previous one (“sc”), the “at” command can be 

invoked by a dedicated SMB pipe (namely “atsvc”) 

and the high layer protocol ATSVC allows to transfer 

the needed information to schedule a task. Such 

operations (referred to the branch from 2 to 2.b4), 

can be modeled with the following transition states: 

 
 

Transition from State#2 to State#2.b1: 
(Ev.A OR Ev.B) AND Cond C AND Cond D 

where: 
- Event A: SMB Com NT Create AndX (SMB 
Command="0x2a") 
- Event B: SMB Com Open AndX (SMB Command="0x2d") 
- Cond. C: Request packet (SMB ResponseFlag=”0”) 
- Cond.D: Pointed resource related to SRVSVC session 

(“SRVSVC” string in SMB Path) 

 

Once the malware file has been transferred, the SMB 

client tries to open a SRVSVC session, through the 

same command as Transition State 2-3 using \srvsvc 

pipe, used to manage the lanmanserver service 

(conceived to share file and print resources with 

clients over the network). This service is invoked in 

case of “net time” command, whose parameter are 

sent in the next state transition. 

 

Transition from State#2.b1 to State#2.b2: 
Ev.A 

where: 
- Event A: SRVSRC NetrRemoteTOD (SRVSVC 

Command=”0x1c”) 

 

Using such command, the attacker looks for the 

local time reference of the victim machine. 

 
Transition from State#2.b2 to State#2.b3: 
(EvA OR Ev.B) AND Cond.C AND Cond.D 

where: 
- Event A: SMB Com NT Create AndX (SMB 
Command="0x2a") 
- Event B: SMB Com Open AndX (SMB Command="0x2d") 
- Cond.C: Request packet (SMB ResponseFlag=”0”) 

- Cond.D: Pointed resource related to ATSVC session 

(“ATSVC” string in SMB Path) 
 

Once the attacker knows the victim time 

reference, he schedules a task in order to execute the 

malicious command at a particular moment. In order 

to do that, it creates a ATSVC, which invokes 

Microsoft AT-Scheduler Service 
Transition from State#2.b3 to State#2.b4: 
Ev.A  

where: 
- Event A: ATSVC JobInfo command refers to MWfilename 

previously transferred 

 

In order to schedule a task, using the “at” 

command previously reported, the attacker must 

specify the malware path. In case it refers to the path 

of the file previously transferred (tr 1→ 1.a ), it 

means he is trying to execute the malicious software. 
The other branches shown in Figure 4 refer to 

other internal operations. In particular the 1.b 

describes the enumeration of scheduled task, using 

“at \\IP” command, which invokes the ATSVC 

service as before (tr.1→1.b1 has the same condition 

as 2.b2→2.b3). Instead, the tr. 1.b1→1.b2 refers to 

“at” job enumeration (ATSVC command 0x2), as 

described hereafter: 

 

Transition from State#1.b1 to State#1.b2: 
Ev.A  

where: 
- Event A: ATSVC JobEnum command (ATSVC 

Command=”0x2”) 

 

The 1.c branch describes the operation needed to 

enumerate the Windows services, using “sc \\IP 

query state= all” command, which invokes the 

SVCCTL service as before (tr.1→1.c1 has the same 

condition as 2.a2→2.a3). Instead, the tr. 1.c1→1.c2 

refers to “sc” service enumeration (SVCCTL 

command 0xe): 

 

Transition from State#1.c1 to State#1.c2: 
Ev.A 

where: 
- EventA: SVCCTL EnumServiceStatusW (SVCCTL 

Command=”0xE”) 
 

Concerning the internal operations needed to 

exfiltrate data using basic Windows functionalities, 

we model the command needed to list directories of 

interest inside the victim machine (using the “dir 

\\IP\C$\DIRECTORY”). Such command can be 

detected looking for SMB packets with transaction 

request (SMB Trans2 request - command “0x32”), 

invoking FirstFirst function which searches a 

directory for a file or subdirectory with a name that 

matches a specific name: 

 

Transition from State#1 to State#1.d: 
Ev.A AND Cond B AND Cond C 

where: 
- EventA: SMB Trans2 request (SMB Command="0x32") 
- Cond. B: Request packet (SMB ResponseFlag=”0”) 
- Cond. C: FindFirst flag = “0x00000006” 
- Action: Pass to State 1 
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Once the attacker wants to copy a particular file, 

he can use the SMB functionalities to remote copy it 

with “copy \\IP\C$\PATH.”. At traffic level, thus 

such operation can be detected looking for SMB 

ReadAndXRequest and hence the state transition can 

be modeled as follow: 

 

Transition from State#1 to State#1.e: 
Ev.A 

where: 
- EventA: SVCCTL ReadAndXReques (SVCCTL Command=” 
0x2e”) 
- Action: Pass to State 1 

 

 

Finally, once the attacker has concluded his 

malicious operations, ha can decide to terminate the 

SMB session, using the LogOff AndX Response 

command. The state transition can hence be modeled 

as follows: 

 

Transition from State#1 to State#1.f: 
Ev.A AND Cond B 

where: 
- Event A: SMB LogOff AndX Response (SMB 
Command="0x74") 
- Cond. B: Request packet (SMB ResponseFlag=”0”) 
- Action: Pass to State 0 

 

The evolution of the states is tracked inside a 

dedicated Look-Up Table, which is flushed after a 

timeout value (configurable for each state). In Figure 

4 such timeout transitions are reported as dashed 

lines. 

 

4.1 Collaborative centralized detection 
 

Many attackers exploit the IP spoofing technique, 

which consists in sending packets with a false source 

IP, in order to hide the identity of the sender (e.g. 

anonymize the attacker) or impersonate an host 

internal to the network in order to evade security 

control (i.e. a firewall or an IDS). 
In order to demonstrate our approach, we 

identified two attacks, represented in Figure 6, which 

are based on the following techniques: decoy scan 

and spoofed Denial Of Service (DOS). In the first 

case, the attacker aims at scanning a victim host 

without revealing the attacking source; in order to be 

anonymized, the attacker spoofs IP decoys (called 

zombies), which are internal hosts reachable by the 

victim. The attacker is then able to scan the victim 

hosts without revealing its real identity (i.e. IP 

address) since the scan appears to be originated from 

different hosts supposed to be in the trusted victim's 

network. In the second case, the attacker aims at 

flooding a victim host by high rate connections, to 

make it unable to process other legitimate requests. 

By spoofing the victim's IP address, the attacker can 

conceal identity and hence the victim cannot identify 

the real attack sources in order to block the attack. 

 
 

Figure 5. Decoy scan and spoofed DOS scenario 
 

To successfully detect such attacks, it is required 

to differentiate the modeling of the signatures for 

each one of the detection levels. At host level, NIDS 

agents are able to perform a preliminary detection 

that reveals the specific protocol/technique exploited 

by the attacker and alert the upper layers. As an 

example, it is possible to detect a suspicious spoofed 

DOS or a host scanning by means of the finite-state 

machine approach proposed in [9], but it is not 

possible to reveal the real attack source at this stage. 

In order to finalize the detection, the first 

detection level (i.e. D-StreaMon agents) has to send 

alerts for the mitigation actions. The NIDS Manager 

collects and correlates such events to perform the 

final recognition of the ongoing attack and the 

correct attribution of the attack's source. For this 

objective, the NIDS Manager observes the source of 

the incoming warnings: the NIDS of the spoofed 

hosts (i.e. the zombies) will not report anything, 

while the NIDS of the attacker's anchor host (i.e. the 

real source of the attack) will report a warning. More 

specifically, representing a warning through the 

notation , where i is the NIDS agent reference 

and y→z indicates the attack direction, the IP 

spoofing condition can be modeled as: 
 

 
 

This detection algorithm can be implemented by 

means of a simple Look-Up Table, able to track all 

the events aggregated by the NIDS Manager. Once a 

spoofed IP event is detected, the attribution is 

performed aggregating, for each attack type, the 

warning referring to the same victim. The offensive 

activity is attributed to the host for which the event is 

recognized both by the own ( ) and the victim 

NIDS. 

 

5. Signature validation 
 

In order to validate the proposed detection 

technique, we implemented a virtual lab with a Kali 

attacker box, two WinXP victim hosts and two Win7 

victim hosts, as shown in Figure 6. In particular, 

using this virtual lab, we specifically test both the 

two scenarios described in Section 4. 
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Figure 6. Validation architecture 
 

Firstly, concerning the validation of the 

signatures described in Figure 4, we registered a 3-

hour traffic track, emulating routine operations 

typical of an office host, as web browsing, shared 

directories accesses, operating system and antivirus 

updates. Additionally, we performed different lateral 

movements (opportunely scheduled) between all the 

hosts, using all the techniques described in Section 

4.1 (for PSEXEC we used the tools described in 

[18]). Then, in order to assess how to face the 

truncated chain events and false alarms with an 

effective timeout management, in some cases we 

voluntarily used incorrect credentials. From Kali box 

to host (2), we also performed a SMB brute force 

(trying to access to shared resources). For this 

purpose, we used the implementation of the well-

known hacking platform Metasploit, by means of the 

module “auxiliary/scanner/smb/smb_login” [18]. 

We then validated the technique proposed in 

Section 4.2 to detect and attribute IP-spoofing based 

attack inside the LAN, represented in Figure 5. In 

particular, we simulated a decoy scan from the Kali 

host to a Windows one (considering the remaining 

hosts as zombies), using the well-known network 

scanner nmap (with argument “–D”); the same 

scenario was reproduced for the spoofed DOS attack, 

using the opensource penetration tool hping3. 

 

5.1 Test results 
 

The offensive activities, that were expected to be 

detected, were correctly identified by the proposed 

solution, without any false alarm. 
 

Table 2. Performed lateral movement for validation 
 

HOSTS 
PSEXEC TOOL COUNT 

Attacker Victim 
K 1,2,3,4 Impacket 3 
1 2,3,4 PsExec SysInt. 2 
2 1,3,4 PsExec SysInt. 2 
3 1,2,4 PsExec SysInt. 2 
4 1,2,3 PsExec SysInt. 2 

 

In order to understand the advantages related to 

the use of such approach with respect to the stateless 

NIDS one, we performed many PSEXEC attacks 

among the hosts (as shown in Table 2) and we logged 

all the warnings received using the state transitions 

individually considered as stateless signatures (apart 

from transitions 1.a2 and 2.a12.a2, which 

requires information from the LUT). 
 

Table 3. Avoided false alarms 
 

 

 
Tran. 

0-0.1 

Tran. 

0.1-1 

Tran. 

1-1.a 

Tran. 

2-2.a1 

Tran. 

2.a2-2.a3 

Tran. 

2.a3-2.a4 

Pkts 4615 70 54 222 47 68 
Pkts/Tot 

[%] 6.59 0.10 0.08 0.32 0.07 0.10 

 

Analyzing the results shown in Table 3 (related to a 

track of ~70k packets), it is possible to verify that: 

 if we had analyzed this traffic with a stateless 

NIDS with those signatures, we would have 

received many false alarms, mainly associated to 

administration licit connections; 

 the peak present for T0-1 column mainly relates 

to the SMB brute force attack intentionally 

performed from Kali (K) machine to WinXP (2) 

host, which was anyway correctly detected by 

the signature related to the branch 0→0.1 of 

Figure 4. 
 

6. Conclusions and Future Works 
 

This work shows how to effectively model 

malicious lateral movements for detection purposes, 

by means of finite-state machine signatures to be 

deployed in IDS agents (host level). The validity of 

such an approach is strengthened with additional 

more complex use cases. The possibility to capillary 

monitor the traffic at host level with the deployable 

version of StreaMon [9] enables additional detection 

scenarios. For instance, the events/warnings 

generated at host level can be aggregated in a 

centralized NIDS Manager, which can correlate them 

so as to detect and attribute advanced attacks, such as 

ones based on IP spoofing which aim at evading the 

security controls. The manager, correlating the stored 

information, can then trigger proper mitigation 

actions (blocking, honeynets and so on), that can be 

implemented with custom solutions or integrated in a 

SDN architecture. 
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