

Advanced Widespread Behavioral Probes against Lateral Movements

Alessandro Greco
1
, Giovanni Pecoraro

1
, Alberto Caponi

1,2
, Giuseppe Bianchi

1,2

1
 University of Rome “Tor Vergata”,

2
CNIT

 Italy

Abstract

The fast evolving nature and the growing

complexity of modern offensive techniques used in

Advanced Persistent Threats attacks call for

innovative approaches for defense techniques. The

ability of modern offensive operations to acquire a

foothold and then expand an infection inside the

victim’s local area network, usually referred to as

lateral movement activity, is significantly critical.

Not only a distributed monitoring infrastructure is

necessary to overcome the lack of a single network

point for detection (opposed to the traditional

network perimeter defense relying on outbound

network intrusion detection systems), but also new

signatures appear necessary to model the stealthy

and complex behavior of offensive lateral movement

activities. In this paper we demonstrate how to

effectively use eXtended Finite State Machine

patterns to face a set of commonly used lateral

movement techniques. With reference to real world

lateral movement attacks (including those ones

based on IP spoofing), we show how the relevant

detection signatures can be gathered and formally

modeled, also employing a widespread distributed

security architecture. Numerical results on real

world traces show the effectiveness of the proposed

approach in avoiding false positives.

1. Introduction

Advanced Persistent Threats (APTs) are the

emerging cyber threats well known for using

complex attack techniques and concealing their

presence in the network for long periods of time [1].

Despite the crucial attention and intense research

effort spent by the cyber-security community, the

time it takes to detect APTs is still measured in days

or even months, with an average [2] of as much as

six months. The main reason for this detection gap is

the sophistication of infection and evasion

techniques used by attackers, in most cases operating

without any specific automatic tool (easily

detectable, as traditional virus).

An aspect that makes it hard to defend against APTs

is the stealth way in which such attacks spread. Most

often, APTs first limit to acquire an internal foothold

in a target network, by typically finding a single

weak spot and exploiting it to gain access to the

network [3]. Once inside, APTs start to spread all

around the network, collecting and exfiltrating

sensitive data. In spite of such a fundamentally

different behavior with respect to the more

traditional threats, network operators and target

companies are still protecting their networks using

defense techniques primarily targeting the protection

of the network perimeter, e.g. via outbound Network

Intrusion Detection Systems (NIDS). Indeed, a report

from the security company Fireye [3] suggests that

companies still spend more than $5 billion on

traditional security measures, whereas, as reported in

[4], they often completely neglect the internal

network protection.
Unfortunately, the detection of these internal

insidious activities is arduous for several reasons

such as the granularity of controls to be performed

and, above all, the complexity of indicators of

compromise to be implemented, because of the use

of administration-like operations and the consequent

high false positive rate.
We think that an effective internal network

defense, capable of detecting the spreading of

infections via lateral movements, requires significant

advances in two complementary directions. The first

direction is related to the monitoring infrastructure.

In fact, rather than relying on a centralized outbound

NIDS, new generation monitoring systems should

rely on the analysis of network-level patterns

through a distributed monitoring architecture,

employing multiple (and ideally collaborative)

probes in the form of software agents widely

available in the network, in principle down to one

single probe per device. Note that we foster an

approach based on the analysis of network-level

events, as this holds the promise to more promptly

detect anomalies and end-point misbehavior if

compared to the current log-based host analysis (e.g.

[5,6]). The second direction, and the main

contribution of this paper, consists of identifying new

attack signatures which are amenable to network-

level analysis and support scalable operation. In

fact, the obvious shortcoming of a network-level

analysis, and to a greater extent of a widespread

distributed infrastructure with multiple vantage

points, is the huge amount of traffic to inspect and

the inherent complexity in identifying malicious

patterns in it. Rule-based approaches (Snort-like [7]),

appear too simple to properly model and characterize

complex behaviors, such as those involved in APT’s

internal infection spreads. Current literature

approaches, which rely on Snort-like IDSs [8],

usually take a two-step approach and thus lose the

International Journal for Information Security Research (IJISR), Volume 6, Issue 2, June 2016

Copyright © 2016, Infonomics Society 651

ability of being able to detect and respond to threats

in (near) real time: they log, in real time, network

events gathered from Snort probes, and then only

later they can parse offline the network logs to

identify malicious patterns.
The crucial questions, addressed in this paper, are

thus: how to formally model realistic complex

patterns, such as those involved in offensive lateral

movements, in a way that they are amenable to be

detected via a packet-by-packet analysis? how to

correlate the warnings generated by the widespread

probes in order to detect complex distributed

attacks? Our answer resides in a monitoring

architecture (Section 3), whose single agents,

intended as local instances of the scalable StreaMon

[9] probe, are based on the notion of finite-state-

machine-based signature, i.e. signatures which are

still based on the analysis of low-level packet events

(expressible via the classic rules). It is possible if

they are able to explicitly model the attack behavior

change in time, through the concept of “attack state”,

and to formalize such evolution. In addition, in order

to detect complex distributed threats (especially

those ones aiming at anonimizing the offensive

operations), all the warnings are centralized and

correlated. The effectiveness of the proposed

architecture is evaluated by modeling lateral

movements of real threat, by step-by-step showing

(Section 4) how it can be formally modeled in a

stateful composition of rules which can then be

executed over the StreaMon probe [9]. A discussion

of related works is then provided in Section 5, while

conclusive remarks and further possible evolutions

of this work are summarized in Section 6.

2. State of the Art on advanced cyber

threats

The traditional defense approach against cyber

threats primarily targets the protection of the network

perimeter by means of outbound NIDSs. Such a

monitoring topology allows the detection of

malicious operations between the infected host inside

the network (red host in Figure 1, most often called

pivot) and the external Command & Control entities,

but neglects the internal malicious connections

between the pivot and the other victim hosts. This is

a limitation in case of modern APTs, which, once

gathered a foothold inside the network, aim at

spreading the infection inside the LAN, taking

control of other internal hosts (orange hosts in Figure

1) without any additional external interaction.

Figure 1. APT scenario

The defense against the lateral movements is

complex both at network and host level. In particular,

the security devices deployed for this purpose are

called Intrusion Detection System (IDS) and can be

host-based (Host IDS - HIDS) or network-based

(NIDS). The first type is a system installed on single

host, mainly dedicated to the monitoring of files

integrity, application logs and system calls, while the

NIDS attempts to discover any unauthorized access

to a computer network by capturing the network

traffic [10]. Almost all the detection techniques used

for lateral movements are based on the Windows

event logs analysis, through HIDSs and centralized

SIEM applications. In [5] and [6], for example, in

order to detect a pass-the-hash attack it is suggested

to implement an host based detection process (using

the Windows and antivirus logs in order to monitor

the authentication events - comparing the results

against an user and/or IP approved list); in addition, a

network user habit based detection approach is also

proposed (once created a baseline of normal system

behavior, the detection techniques look for anomalies

on the number of connection in a short period of time

on a specific port). A similar and wider approach is

introduced in the Microsoft guide dedicated to the

mitigation of the pass-the-hash attack [11], where

they propose a complete list of anomalous user

behaviors, which can be interpreted as stolen

credential use, and the relative Windows log events.

This kind of host-based analysis can be

performed both in a decentralized and in a

centralized way, using SIEM solutions whose high

performance allows to implement complex statistical

algorithms, as in [12]. For the detection of such

threats, HIDS approaches are hence preferred to the

NIDS ones, probably because of the use of licit

protocols and administration commands, although a

network analysis can be performed at run time and

integrated with Software Defined Network devices

for mitigation. One example of NIDS detection for

this threat is proposed in [13] and is based on the

conversion of the Windows log indicator. In

particular, indicators of lateral movement proposed

in (Windows event type and relative information) are

converted in SNORT format [7] using regular

expressions and text search. A mixed approach,

similar to the one of this article, is provided by [4]:

the detection algorithm is based on the SMB

authentication process chain in a Windows

architecture and performs DPI in order to extract

credentials.

In this paper we focus on the detection of these

threats at network level, which is complex for many

reasons. First, there is not anymore a single point in

the network such as an outbound NIDS which

permits to monitor malicious traffic activities.

Second, the attacker employs multiple different

techniques in the lateral movement phase. Finally,

such techniques are engineered to hide among

legitimate traffic and activities, and use standard

administration-like operations in this phase. Through

the usage of such methods it is difficult to detect the

lateral movement, because benign and malicious

International Journal for Information Security Research (IJISR), Volume 6, Issue 2, June 2016

Copyright © 2016, Infonomics Society 652

utilization of these methods looks similar and

therefore distinction is complex [14].

A suitable defense against lateral movements thus

must face two complementary needs. First, the

network monitoring architecture must also spread

inside the LAN via the monitoring agents widespread

located inside the network. Moreover, since lateral

movements are characterized by an administration-

like traffic (most often derived by human-driven

operations), whose single packets are legitimate

events, to prevent false alarms it is necessary to

detect how such events occur (and change) in time.

As discussed in the next section, we suggest relying

on state machines, executable as signatures to be

implemented in deployable version of the StreaMon

probe [9], called D-Streamon [15].

3. Proposed Monitoring Architecture

The implementation of a widespread monitoring

infrastructure requires to deploy and to manage a

high number of NIDS agents. Without an automated

process, a manual approach does not scale in large

networks and in general it is a cumbersome and error

prone task. For this reason, we create a capillary

monitoring architecture as shown in Figure 2, based

on an extensive deployment of lightweight NIDS

agents at host level, whose events/warning analysis

is centralized by a NIDS Manager, which can

correlate data and trigger mitigation actions.

3.1 NIDS Agent

Offensive lateral movements are very complex to

be detected with a traditional NIDS monitoring

approach, not only for an architecture issue

(perimeter monitoring vs distributed monitoring), but

also for the difficulty to summarize such attacks into

a single matching rule. Despite the growing interest

in behavioral-based NIDSs, designed to

automatically identify “deviations” from the normal

behavior of a host or network [16], the need for their

extensive training in conjunction with their statistical

(non-deterministic) operation implies that signature-

based NIDSs still play a dominant role in the NIDS

market. The key problem in signature-based NIDS is

the appropriate definition of signatures for the

variety of threats recognizable by the system.

Emerging threats in lateral movements and APT

scenarios are usually very complex, and are hardly

summarized into a single matching rule. Rather, they

do encompass a multiplicity of serial steps that, if

taken alone and detected with atomic IOC by a

stateless NIDS, could give many false alarms.

Figure 2. Monitoring architecture

To address such a problem, we propose to

incorporate the “state” of a threat into a formal

model of the threat signature, so that the detection of

different atomic IOCs can be employed at different

“stages” of the threat’s evolution (summarized by

explicit states). It readily follows that an IOC which

could be normal or legitimate at a given stage,

becomes an indicator of an ongoing attack only when

it happens at a different stage, significantly reducing

the false positives.

To our surprise, only limited research work has

addressed the goal of devising stateful signatures.

For instance, [17] promotes such an approach, but

restricts it only to layer 3 rules. Conversely, the

StreaMon probe proposed in [9] provides a

monitoring probe architecture capable of executing

and evolving state-machine-based signatures, but

gives only a very limited insight on how to model

real world threats and whether a state-machine-based

signature model is actually suitable for this task.

In [18], we proposed to model behavioral pattern

signatures as state diagrams which permit the

programmer to both formalize the notion of “attack

state”, as well as define, for each state, the rules

which model the state evolution in the detection

process. In details, a finite-state-machine-based

signature is expressed in terms of:

 entities: the entity to which as time-varying “state”

is associated; it can be a single entity, such as a

target IP address, or a pair, such as [IP attacker, IP

victim];

 states: for each entity, it formalizes an “attack

state” and it associates to each state a possibly

different set of features (events or conditions) that

shall be monitored. Note that different states may

entail the monitoring of different events;

 state transitions: similarly, for each state, one or

more state transition rules are associated, again

expressed as a combination of events and

conditions. This permits to formally specify how

the state shall evolve.

 actions: once a transition state is executed, the

finite-state machine can also perform actions, such

as changing a variable (e.g. counter) or giving a

warning to a security alerts collector.

Once the programmer has identified the set of

attack states, the main modeling task consists in

associating state transitions to matching rules,

expressed as a Boolean predicate on events or

conditions (as defined below). In this paper we will

International Journal for Information Security Research (IJISR), Volume 6, Issue 2, June 2016

Copyright © 2016, Infonomics Society 653

adopt the notation and syntax shown in the table

below.

Transition from State#N to State#M:
(Event A OR Event B) AND Condition C

where:
- Event A: description and indicator of the event A
- Event B: description and indicator of the event B
- Cond.C: description and indicator of the

condition C
• Action: description of the action

An event refers to information that can be

detected from the packets, including both

information gathered from the packet header as well

as information eventually extracted from the packet

payload using Deep Packet Inspection (DPI). A

condition refers to the test of logical operations on

collected statistics associated to the entity and/or

state (e.g. event counter greater than a threshold,

communication direction, etc.). Finally, the signature

developer may optionally associate an action to each

state transition (for instance, send an alert or reset a

counter).
Such pattern are then implemented as eXtended

Finite State Machine (XFSM) signatures for

StreaMon [9] probe, which offers elementary stream-

based traffic analysis primitives (e.g. feature

extraction, parsing, statistics collection, correlation,

etc.), as well as Deep Packet Inspection (DPI)

functionalities for particular protocols. In particular,

for the proposed capillary and distributed monitoring

architecture, we used a lightweight version of

StreaMon [9], called D-StreaMon [15], conceived as

distributed Network Functional Virtualization (NFV)

solution. The events/warning generated at host level

by the NIDS agents are sent to the Manager over a

publish/subscribe ZeroMQ [19] architecture,

allowing the asynchronous dissemination of

warnings/alerts.

3.2. NIDS Manager

The Manager performs different tasks. First, it is

the master of D-StreaMon architecture and it is

committed to initialize the probes, in terms of

signatures to be detected. It is also the brain of the

security infrastructure able to receive the

asynchronous events from the NIDS substrate. Once

the warnings are sent by a single NIDS, the

aggregated analysis can be performed in several

ways, according to the attacks that need to be

detected, using statistical or deterministic

approaches. Finally, once an attack is clearly

detected and attributed, the NIDS Manager triggers

mitigation actions, managed by the Mitigation

orchestrator, which can be integrated also in a

Software Defined Network (SDN) architecture.

4. Use Cases of Advanced Detection

Once such capillary monitoring capability is

available, it is possible to define and implement a

variety of detection logics, which allow to

adequately model most of malicious internal

activities. In particular, in addition to the detection

which can be implemented at host level, we propose

to aggregate and correlate the events/warnings

generated at host level, in order to detect, identify

and attribute more complex attacks, most often

aiming at evading the security monitoring checks.

4.1. Complex behavioral signatures for

lateral movements

As explained in Section 2, the sophistication of

APTs is always increasing: in order to perform their

malicious tasks, the attackers continually enhance the

offensive techniques, implementing new way to

silently spread all around the victim LAN and fulfill

the objectives. In Windows domains, most often the

lateral movements are based on administrative

commands, both to deceive the network security

analysts and to exploit the powerful built-in

functionalities.

In [18, 20] we show how to use XFSM

signatures to effectively model such threats.

PSEXEC was the key case study used [18] to prove

the effectiveness of the XFSM signatures. It is a

widely used technique, which enables the remote

control of a host, automatizing the process of

copying a software on a shared directory of a second

host and then remotely executing it as a service,

exploiting the Server Message Block (SMB) and

Remote Procedure Call (RPC) protocols

functionalities.

In order to identify and then model the effective

signatures, we analyzed noise-less traffic samples

containing the patterns of interest. In our case, we

created a virtual environment, representing a basic

two-hosts (one WinXP and one Win7) victim local

Domain based on Windows Active Directory, and we

used an attacker Linux Kali Virtual Machine. After

having performed many times the offensive activities

on the victims, the traffic extracted from PCAPs was

firstly visually analyzed through the Message

Sequence Chart (MSC) representation, initially

developed by the International Telecommunication

Union as a requirement specification of protocols.

This representation is useful for extracting

patterns since it gives an overview of the message

exchange among communicating entities,

considering order of messages and time constraints.

As an example, Figure 3 shows the network pattern

of a SMB authentication failure, extracted from a

PCAP containing a SMB brute force attack

(afterwards better explained).

International Journal for Information Security Research (IJISR), Volume 6, Issue 2, June 2016

Copyright © 2016, Infonomics Society 654

Figure 3. MSC of SMB Authentication Failure

In order to interpret this chart, it is necessary to

understand how the SMB protocol works. The SMB

packet header contains the command to be executed

(expressed as an hex code), which is appended to a

command-related payload. For example, with

reference to the “Session Setup AndX Request”

command shown in Figure 3, at a fixed position in

the header it is possible to extract the

SMB_Command (“0x73” for SMB and “0x0001” for

SMB2) or the ResponseFlag (“0” for request packet

and “1” for the response one), while in the request

packet payload the credentials are included too.

Once modeled a PSEXEC attack, we analyzed a

broader set of lateral movement threats used by an

attacker to spread infections inside the victim LANs.

In particular, we formally modeled the threats listed

in Tab.1 (used by real APTs) as XFSM signatures

and validated their effectiveness by simulation.

Table 1. Lateral movements

Branch Lateral movement
0 → 0.1 → 0 SMB Brute force

0 → 2.a4 SMB session creation, malicious file upload,
service creation and start

0 → 2.a5 PSEXEC

0 → 2.b4
SMB session creation, malicious file upload,
victim local time acquisition, scheduled task

creation
0 → 1.b2 Scheduled task enumeration
0 → 1.c2 Service enumeration
0 → 1.d Directory listing
0 → 1.e File copy
0 → 1.f SMB session delete

The single signatures were then integrated in a

single overall XFSM signature, which can be

considered as a complex cyber detection decision

tree, shown in Figure 4.

Every branch models a particular offensive

technique, whose XFSM signature can share state

and transitions with others. In particular, with

reference to Figure 4, the transition 0→1 refers to the

remote authentication event inside a LAN, consisting

in the creation of a SMB session.

Figure 4. Complex behavioral signatures for lateral

movements

For such operation, the attackers must

authenticate (tr. 0→0.1); in case of valid credentials,

the session is created and the attacker can access the

victim resources (tr. 0.1→1), otherwise an

authentication error is sent to the attacker (tr.

0.1→0). In such conditions, a SMB brute force can

hence be modeled as a chain of such events. Once

the attacker is authenticated, he can remotely

perform many activities on the victim, such as

executing commands, gathering information about

the processes, listing and exfiltrating data, etc. We

analyzed a subset of the lateral movements widely

used by real APTs, only in the Windows XP case

(SMB version 1); the same approach is applicable to

the successive SMB versions, specifying the relative

SMB command name and hex values.

Considering the possibility of remotely

controlling the victim, as previously anticipated, we

firstly considered the PSEXEC technique (from tr.0

to tr. 2.a5), which automatically allows to create the

SMB session, to upload a malicious software in the

victim and to launch it as a new service. In order to

detect this attack it is necessary to interpret the SMB

commands, through DPI (e.g. in case the SMB pipe

“svcctl” is invoked, it means that the attacker is

trying to interact with the Windows process

“services.exe”, responsible of the services

management inside the operating system, and then

the protocol SVCCTL is going to be used).
A similar attack can be manually performed,

using Windows administration commands: once

authenticated using SMB functionalities (“net use”

command), the attacker uploads a malicious software

on the victim host (e.g. at “C:\..\mw.exe” path),

creates a new Windows service connected to it (“sc

\\IP create maliciousService binpath= C:\..\mw.exe”)

and then launches it (“sc \\IP start

maliciousService”). These manual operations can be

detected by means of a stateful signature (from tr.0 to

tr. 2.a4), similar to the PSEXEC one. In particular, at

2.a2 state it is possible to identify if the attack is

performed with the PSEXEC automatic tool or

manually in fact, in the first case, since it is an

automated attack, the creation and the execution of

International Journal for Information Security Research (IJISR), Volume 6, Issue 2, June 2016

Copyright © 2016, Infonomics Society 655

the service is performed invoking the SMB pipe

“svcctl” just once, while in the second case it is

invoked every time the “sc” command is used.

Therefore, the transition 2.a2→2.a3 can be modeled

as follows:

Transition from State#2.a2 to State#2.a3:
(Ev.A OR Ev.B) AND Cond.C AND Cond.D

where:
- Event A: SMB Com NT Create AndX (SMB
Command="0x2a")
- Event B: SMB Com Open AndX (SMB Command="0x2d")
- Cond.C: Request packet (SMB ResponseFlag=”0”)
- Cond.D: Pointed resource related to SVCTTL session

(“SVCCTL” string in SMB Path)

while 2.a3→2.a4 is the same as 2.a2→2.a5.
Another way to remotely execute a tool in

Windows platform is to create a scheduled task by

means of the “at” command. In this case, once the

attacker has created a SMB session and uploaded the

malicious software (e.g. at “C:\..\mw.exe” path), he

acquires the local victim time (“net \\IP time”) and

then schedule to execute the malware a few seconds

after (“at \\IP C:\..\mw.exe”). Similarly to the

previous one (“sc”), the “at” command can be

invoked by a dedicated SMB pipe (namely “atsvc”)

and the high layer protocol ATSVC allows to transfer

the needed information to schedule a task. Such

operations (referred to the branch from 2 to 2.b4),

can be modeled with the following transition states:

Transition from State#2 to State#2.b1:
(Ev.A OR Ev.B) AND Cond C AND Cond D

where:
- Event A: SMB Com NT Create AndX (SMB
Command="0x2a")
- Event B: SMB Com Open AndX (SMB Command="0x2d")
- Cond. C: Request packet (SMB ResponseFlag=”0”)
- Cond.D: Pointed resource related to SRVSVC session

(“SRVSVC” string in SMB Path)

Once the malware file has been transferred, the SMB

client tries to open a SRVSVC session, through the

same command as Transition State 2-3 using \srvsvc

pipe, used to manage the lanmanserver service

(conceived to share file and print resources with

clients over the network). This service is invoked in

case of “net time” command, whose parameter are

sent in the next state transition.

Transition from State#2.b1 to State#2.b2:
Ev.A

where:
- Event A: SRVSRC NetrRemoteTOD (SRVSVC

Command=”0x1c”)

Using such command, the attacker looks for the

local time reference of the victim machine.

Transition from State#2.b2 to State#2.b3:
(EvA OR Ev.B) AND Cond.C AND Cond.D

where:
- Event A: SMB Com NT Create AndX (SMB
Command="0x2a")
- Event B: SMB Com Open AndX (SMB Command="0x2d")
- Cond.C: Request packet (SMB ResponseFlag=”0”)

- Cond.D: Pointed resource related to ATSVC session

(“ATSVC” string in SMB Path)

Once the attacker knows the victim time

reference, he schedules a task in order to execute the

malicious command at a particular moment. In order

to do that, it creates a ATSVC, which invokes

Microsoft AT-Scheduler Service
Transition from State#2.b3 to State#2.b4:
Ev.A

where:
- Event A: ATSVC JobInfo command refers to MWfilename

previously transferred

In order to schedule a task, using the “at”

command previously reported, the attacker must

specify the malware path. In case it refers to the path

of the file previously transferred (tr 1→ 1.a), it

means he is trying to execute the malicious software.
The other branches shown in Figure 4 refer to

other internal operations. In particular the 1.b

describes the enumeration of scheduled task, using

“at \\IP” command, which invokes the ATSVC

service as before (tr.1→1.b1 has the same condition

as 2.b2→2.b3). Instead, the tr. 1.b1→1.b2 refers to

“at” job enumeration (ATSVC command 0x2), as

described hereafter:

Transition from State#1.b1 to State#1.b2:
Ev.A

where:
- Event A: ATSVC JobEnum command (ATSVC

Command=”0x2”)

The 1.c branch describes the operation needed to

enumerate the Windows services, using “sc \\IP

query state= all” command, which invokes the

SVCCTL service as before (tr.1→1.c1 has the same

condition as 2.a2→2.a3). Instead, the tr. 1.c1→1.c2

refers to “sc” service enumeration (SVCCTL

command 0xe):

Transition from State#1.c1 to State#1.c2:
Ev.A

where:
- EventA: SVCCTL EnumServiceStatusW (SVCCTL

Command=”0xE”)

Concerning the internal operations needed to

exfiltrate data using basic Windows functionalities,

we model the command needed to list directories of

interest inside the victim machine (using the “dir

\\IP\C$\DIRECTORY”). Such command can be

detected looking for SMB packets with transaction

request (SMB Trans2 request - command “0x32”),

invoking FirstFirst function which searches a

directory for a file or subdirectory with a name that

matches a specific name:

Transition from State#1 to State#1.d:
Ev.A AND Cond B AND Cond C

where:
- EventA: SMB Trans2 request (SMB Command="0x32")
- Cond. B: Request packet (SMB ResponseFlag=”0”)
- Cond. C: FindFirst flag = “0x00000006”
- Action: Pass to State 1

International Journal for Information Security Research (IJISR), Volume 6, Issue 2, June 2016

Copyright © 2016, Infonomics Society 656

Once the attacker wants to copy a particular file,

he can use the SMB functionalities to remote copy it

with “copy \\IP\C$\PATH.”. At traffic level, thus

such operation can be detected looking for SMB

ReadAndXRequest and hence the state transition can

be modeled as follow:

Transition from State#1 to State#1.e:
Ev.A

where:
- EventA: SVCCTL ReadAndXReques (SVCCTL Command=”
0x2e”)
- Action: Pass to State 1

Finally, once the attacker has concluded his

malicious operations, ha can decide to terminate the

SMB session, using the LogOff AndX Response

command. The state transition can hence be modeled

as follows:

Transition from State#1 to State#1.f:
Ev.A AND Cond B

where:
- Event A: SMB LogOff AndX Response (SMB
Command="0x74")
- Cond. B: Request packet (SMB ResponseFlag=”0”)
- Action: Pass to State 0

The evolution of the states is tracked inside a

dedicated Look-Up Table, which is flushed after a

timeout value (configurable for each state). In Figure

4 such timeout transitions are reported as dashed

lines.

4.1 Collaborative centralized detection

Many attackers exploit the IP spoofing technique,

which consists in sending packets with a false source

IP, in order to hide the identity of the sender (e.g.

anonymize the attacker) or impersonate an host

internal to the network in order to evade security

control (i.e. a firewall or an IDS).
In order to demonstrate our approach, we

identified two attacks, represented in Figure 6, which

are based on the following techniques: decoy scan

and spoofed Denial Of Service (DOS). In the first

case, the attacker aims at scanning a victim host

without revealing the attacking source; in order to be

anonymized, the attacker spoofs IP decoys (called

zombies), which are internal hosts reachable by the

victim. The attacker is then able to scan the victim

hosts without revealing its real identity (i.e. IP

address) since the scan appears to be originated from

different hosts supposed to be in the trusted victim's

network. In the second case, the attacker aims at

flooding a victim host by high rate connections, to

make it unable to process other legitimate requests.

By spoofing the victim's IP address, the attacker can

conceal identity and hence the victim cannot identify

the real attack sources in order to block the attack.

Figure 5. Decoy scan and spoofed DOS scenario

To successfully detect such attacks, it is required

to differentiate the modeling of the signatures for

each one of the detection levels. At host level, NIDS

agents are able to perform a preliminary detection

that reveals the specific protocol/technique exploited

by the attacker and alert the upper layers. As an

example, it is possible to detect a suspicious spoofed

DOS or a host scanning by means of the finite-state

machine approach proposed in [9], but it is not

possible to reveal the real attack source at this stage.

In order to finalize the detection, the first

detection level (i.e. D-StreaMon agents) has to send

alerts for the mitigation actions. The NIDS Manager

collects and correlates such events to perform the

final recognition of the ongoing attack and the

correct attribution of the attack's source. For this

objective, the NIDS Manager observes the source of

the incoming warnings: the NIDS of the spoofed

hosts (i.e. the zombies) will not report anything,

while the NIDS of the attacker's anchor host (i.e. the

real source of the attack) will report a warning. More

specifically, representing a warning through the

notation , where i is the NIDS agent reference

and y→z indicates the attack direction, the IP

spoofing condition can be modeled as:

This detection algorithm can be implemented by

means of a simple Look-Up Table, able to track all

the events aggregated by the NIDS Manager. Once a

spoofed IP event is detected, the attribution is

performed aggregating, for each attack type, the

warning referring to the same victim. The offensive

activity is attributed to the host for which the event is

recognized both by the own () and the victim

NIDS.

5. Signature validation

In order to validate the proposed detection

technique, we implemented a virtual lab with a Kali

attacker box, two WinXP victim hosts and two Win7

victim hosts, as shown in Figure 6. In particular,

using this virtual lab, we specifically test both the

two scenarios described in Section 4.

International Journal for Information Security Research (IJISR), Volume 6, Issue 2, June 2016

Copyright © 2016, Infonomics Society 657

Figure 6. Validation architecture

Firstly, concerning the validation of the

signatures described in Figure 4, we registered a 3-

hour traffic track, emulating routine operations

typical of an office host, as web browsing, shared

directories accesses, operating system and antivirus

updates. Additionally, we performed different lateral

movements (opportunely scheduled) between all the

hosts, using all the techniques described in Section

4.1 (for PSEXEC we used the tools described in

[18]). Then, in order to assess how to face the

truncated chain events and false alarms with an

effective timeout management, in some cases we

voluntarily used incorrect credentials. From Kali box

to host (2), we also performed a SMB brute force

(trying to access to shared resources). For this

purpose, we used the implementation of the well-

known hacking platform Metasploit, by means of the

module “auxiliary/scanner/smb/smb_login” [18].

We then validated the technique proposed in

Section 4.2 to detect and attribute IP-spoofing based

attack inside the LAN, represented in Figure 5. In

particular, we simulated a decoy scan from the Kali

host to a Windows one (considering the remaining

hosts as zombies), using the well-known network

scanner nmap (with argument “–D”); the same

scenario was reproduced for the spoofed DOS attack,

using the opensource penetration tool hping3.

5.1 Test results

The offensive activities, that were expected to be

detected, were correctly identified by the proposed

solution, without any false alarm.

Table 2. Performed lateral movement for validation

HOSTS
PSEXEC TOOL COUNT

Attacker Victim
K 1,2,3,4 Impacket 3
1 2,3,4 PsExec SysInt. 2
2 1,3,4 PsExec SysInt. 2
3 1,2,4 PsExec SysInt. 2
4 1,2,3 PsExec SysInt. 2

In order to understand the advantages related to

the use of such approach with respect to the stateless

NIDS one, we performed many PSEXEC attacks

among the hosts (as shown in Table 2) and we logged

all the warnings received using the state transitions

individually considered as stateless signatures (apart

from transitions 1.a2 and 2.a12.a2, which

requires information from the LUT).

Table 3. Avoided false alarms

Tran.

0-0.1

Tran.

0.1-1

Tran.

1-1.a

Tran.

2-2.a1

Tran.

2.a2-2.a3

Tran.

2.a3-2.a4

Pkts 4615 70 54 222 47 68
Pkts/Tot

[%] 6.59 0.10 0.08 0.32 0.07 0.10

Analyzing the results shown in Table 3 (related to a

track of ~70k packets), it is possible to verify that:

 if we had analyzed this traffic with a stateless

NIDS with those signatures, we would have

received many false alarms, mainly associated to

administration licit connections;

 the peak present for T0-1 column mainly relates

to the SMB brute force attack intentionally

performed from Kali (K) machine to WinXP (2)

host, which was anyway correctly detected by

the signature related to the branch 0→0.1 of

Figure 4.

6. Conclusions and Future Works

This work shows how to effectively model

malicious lateral movements for detection purposes,

by means of finite-state machine signatures to be

deployed in IDS agents (host level). The validity of

such an approach is strengthened with additional

more complex use cases. The possibility to capillary

monitor the traffic at host level with the deployable

version of StreaMon [9] enables additional detection

scenarios. For instance, the events/warnings

generated at host level can be aggregated in a

centralized NIDS Manager, which can correlate them

so as to detect and attribute advanced attacks, such as

ones based on IP spoofing which aim at evading the

security controls. The manager, correlating the stored

information, can then trigger proper mitigation

actions (blocking, honeynets and so on), that can be

implemented with custom solutions or integrated in a

SDN architecture.

7. References

[1] Tankard, Colin. "Advanced persistent threats and how

to monitor and deter them." Network security 2011.8

(2011): 16-19.

[2] "APT Detection – Closing the Gaping Hole", 2014

[3] Dan Reis, “It's Only the Beginning for Endpoint

Security”, FirEye 05

[4] A. Oberle et al., "Preventing Pass-the-Hash and

Similar Impersonation Attacks in Enterprise

Infrastructures," 2016 IEEE 30th International

Conference on Advanced Information Networking

and Applications (AINA), Crans-Montana, 2016, pp.

800-807.

[5] "Pass-the-hash attacks: Tools and Mitigation", SANS,

2010

International Journal for Information Security Research (IJISR), Volume 6, Issue 2, June 2016

Copyright © 2016, Infonomics Society 658

[6] Jadeja et al. "Implementation and Mitigation of

Various Tools for Pass the Hash Attack." Procedia

Computer Science 79 (2016): 755-764.

[7] Roesch, Martin. "Snort: Lightweight Intrusion

Detection for Networks." LISA. Vol. 99. No. 1. 1999.

[8] Marchetti, Mirco, et al. "Analysis of high volumes of

network traffic for Advanced Persistent Threat

detection." Computer Networks (2016).

[9] G. Bianchi et al. , "StreaMon: A software-defined

monitoring platform" , Teletraffic Congress (ITC),

2014 26th International , pp.1 -6

[10] Raghav, Iti, Shashi Chhikara, and Nitasha Hasteer.

"Intrusion Detection and Prevention in Cloud

Environment: A Systematic Review." International

Journal of Computer Applications 68.24 (2013).

[11] "Mitigating Pass-the-Hash and Other Credential

Theft", Microsoft, 2014

[12] G. Rush et al., "DCAFE: A Distributed Cyber Security

Automation Framework for Experiments," Computer

Software and Applications Conference Workshops,

2014 IEEE 38th International, Vasteras, 2014.

[13] "Detecting “Pass-the-hash” attacks with Sagan in real

time."

https://quadrantsec.com/about/blog/detecting_pass_th

e_hash_attacks_with_sagan_in_real_time/

[14] M. Ussath, D. Jaeger, Feng Cheng and C. Meinel,

"Advanced persistent threats: Behind the scenes,"

2016 Annual Conference on Information Science and

Systems (CISS), Princeton, NJ, 2016, pp. 181-186.

[15] Ventre, Pier Luigi, et al. "D-STREAMON-a NFV-

capable distributed framework for network

monitoring." arXiv preprint arXiv:1608.01377 (2016).

[16] Mitchell, David. "Intrusion Detection from Simple to

Cloud" (2015).

[17] Sekar, R., et al. "Specification-based anomaly

detection: a new approach for detecting network

intrusions." Proceedings of the 9th ACM conference

on Computer and communications security. ACM,

2002.

[18] A.Greco, G.Bianchi – ”Detection of offensive lateral

movements using finite-state-machine-based patterns”

– Global Wireless Summit, Aarhus, 2016

[19] Hintjens, Pieter. ZeroMQ: Messaging for Many

Applications. " O'Reilly Media, Inc.", 2013.

[20] A.Greco, A.Caponi, G.Bianchi – “Facing lateral

movements using widespread behavioral probes” -

11th International Conference for Internet Technology

and Secured Transactions, Barcelona, 2016

8. Acknowledgements

This research was partially supported by the EU

Commission within the Horizon 2020 program,

SCISSOR project grant no 644425.

International Journal for Information Security Research (IJISR), Volume 6, Issue 2, June 2016

Copyright © 2016, Infonomics Society 659

