Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New imaging techniques and opportunities in endoscopy

Abstract

Gastrointestinal endoscopy is undergoing major improvements, which are driven by new available technologies and substantial refinements of optical features. In this Review, we summarize available and evolving imaging technologies that could influence the clinical algorithm of endoscopic diagnosis. Detection, characterization and confirmation are essential steps required for proper endoscopic diagnosis. Optical and nonoptical methods can help to improve each step; these improvements are likely to increase the detection rate of neoplasias and reduce unnecessary endoscopic treatments. Furthermore, functional and molecular imaging are emerging as new diagnostic tools that could provide an opportunity for personalized medicine, in which endoscopy will define disease outcome or predict the response to targeted therapy.

Key Points

  • Technological developments of gastrointestinal endoscopy improve endoscopic diagnosis

  • High-definition, virtual and conventional chromoendoscopy facilitate detection and characterization of mucosal lesions

  • Endomicroscopy is able to provide in vivo histology during ongoing endoscopy

  • Nonoptical spectroscopic methods can be used to identify neoplastic areas or to determine the field effect of cancer

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key steps to endoscopic diagnosis.
Figure 2: High-definition and virtual chromoendoscopy.
Figure 3: Principles of digital or virtual chromoendoscopy.
Figure 4: Software-based image enhancement.
Figure 5: Types of optical and nonoptical techniques for tissue characterization.
Figure 6: Schematic diagram of endomicroscopy.
Figure 7: Endomicroscopy of early signet ring cell gastric cancer.

Similar content being viewed by others

References

  1. Laiyemo, A. O. et al. Likelihood of missed and recurrent adenomas in the proximal versus the distal colon. Gastrointest. Endosc. 74, 253–261 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kahi, C. J., Hewett, D. G., Norton, D. L., Eckert, G. J. & Rex, D. K. Prevalence and variable detection of proximal colon serrated polyps during screening colonoscopy. Clin. Gastroenterol. Hepatol. 9, 42–46 (2011).

    Article  PubMed  Google Scholar 

  3. Singh, H., Nugent, Z., Demers, A. A. & Bernstein, C. N. Rate and predictors of early/missed colorectal cancers after colonoscopy in Manitoba: a population-based study. Am. J. Gastroenterol. 105, 2588–2596 (2010).

    Article  PubMed  Google Scholar 

  4. ASGE Technology Committee et al. High-resolution and high-magnification endoscopes. Gastrointest. Endosc. 69, 399–407 (2009).

  5. Subramanian, V., Mannath, J., Hawkey, C. J. & Ragunath, K. High definition colonoscopy vs. standard video endoscopy for the detection of colonic polyps: a meta-analysis. Endoscopy 43, 499–505 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Sauk, J., Hoffman, A., Anandasabapathy, S. & Kiesslich, R. High-definition and filter-aided colonoscopy. Gastroenterol. Clin. North Am. 39, 859–881 (2010).

    Article  PubMed  Google Scholar 

  7. Waye, J. D. Wide view and retroview during colonoscopy. Gastroenterol. Clin. North Am. 39, 883–900 (2010).

    Article  PubMed  Google Scholar 

  8. Leufkens, A. M. et al. Effect of a retrograde-viewing device on adenoma detection rate during colonoscopy: the TERRACE study. Gastrointest. Endosc. 73, 480–489 (2011).

    Article  PubMed  Google Scholar 

  9. DeMarco, D. C. et al. Impact of experience with a retrograde-viewing device on adenoma detection rates and withdrawal times during colonoscopy: the Third Eye Retroscope study group. Gastrointest. Endosc. 71, 542–550 (2010).

    Article  PubMed  Google Scholar 

  10. Waye, J. D. et al. A retrograde-viewing device improves detection of adenomas in the colon: a prospective efficacy evaluation. Gastrointest. Endosc. 71, 551–556 (2010).

    Article  PubMed  Google Scholar 

  11. Wallace, M. B. & Kiesslich, R. Advances in endoscopic imaging of colorectal neoplasia. Gastroenterology 138, 2140–2150 (2010).

    Article  PubMed  Google Scholar 

  12. Kiesslich, R. & Neurath, M. F. Chromoendoscopy and other novel imaging techniques. Gastroenterol. Clin. North Am. 35, 605–619 (2006).

    Article  PubMed  Google Scholar 

  13. Brown, S. R. & Baraza, W. Chromoscopy versus conventional endoscopy for the detection of polyps in the colon and rectum. Cochrane Database of Syst. Rev. Issue 10. Art. No.: CD006439. doi:10.1002/14651858.CD006439.pub3 (2010).

  14. Subramanian, V., Mannath, J., Ragunath, K. & Hawkey, C. J. Meta-analysis: the diagnostic yield of chromoendoscopy for detecting dysplasia in patients with colonic inflammatory bowel disease. Aliment. Pharmacol. Ther. 33, 304–312 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Ngamruengphong, S., Sharma, V. K. & Das, A. Diagnostic yield of methylene blue chromoendoscopy for detecting specialized intestinal metaplasia and dysplasia in Barrett's esophagus: a meta-analysis. Gastrointest. Endosc. 69, 1021–1028 (2009).

    Article  PubMed  Google Scholar 

  16. Goetz, M. & Kiesslich, R. Advanced imaging of the gastrointestinal tract: research vs. clinical tools? Curr. Opin. Gastroenterol. 25, 412–421 (2009).

    Article  PubMed  Google Scholar 

  17. Kiesslich, R. et al. Endoflag: a new software based filter technology significantly increases the diagnostic yield of colorectal neoplasia during screening colonoscopy. A prospective randomized controlled trial. Gastrointest. Endosc. 71, AB185 (2010).

    Article  Google Scholar 

  18. Kuiper, T. & Dekker, E. Imaging: NBI—detection and differentiation of colonic lesions. Nat. Rev. Gastroenterol. Hepatol. 7, 128–130 (2010).

    Article  PubMed  Google Scholar 

  19. Mannath, J., Subramanian, V., Hawkey, C. J. & Ragunath, K. Narrow band imaging for characterization of high grade dysplasia and specialized intestinal metaplasia in Barrett's esophagus: a meta-analysis. Endoscopy 42, 351–359 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Herrero, L. A., Weusten, B. L. & Bergman, J. J. Autofluorescence and narrow band imaging in Barrett's esophagus. Gastroenterol. Clin. North Am. 39, 747–758 (2010).

    Article  Google Scholar 

  21. Uedo, N. et al. Role of narrow band imaging for diagnosis of early-stage esophagogastric cancer: current consensus of experienced endoscopists in Asia-Pacific region. Dig. Endosc. 23 (Suppl. 1), 58–71 (2011).

    Article  PubMed  Google Scholar 

  22. Kato, M. et al. Magnifying endoscopy with narrow-band imaging achieves superior accuracy in the differential diagnosis of superficial gastric lesions identified with white-light endoscopy: a prospective study. Gastrointest. Endosc. 72, 523–529 (2010).

    Article  PubMed  Google Scholar 

  23. Wallace, M. B., Wax, A., Roberts, D. N. & Graf, R. N. Reflectance spectroscopy. Gastrointest. Endosc. Clin. N. Am. 19, 233–242 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Boustany, N. N., Boppart, S. A. & Backman, V. Microscopic imaging and spectroscopy with scattered light. Annu. Rev. Biomed. Eng. 15, 285–314 (2010).

    Article  Google Scholar 

  25. Backman, V. & Roy, H. K. Light-scattering technologies for field carcinogenesis detection: a modality for endoscopic prescreening. Gastroenterology 140, 35–41 (2011).

    Article  PubMed  Google Scholar 

  26. Roy, H. K., Goldberg, M. J., Bajaj, S. & Backman, V. Colonoscopy and optical biopsy: bridging technological advances to clinical practice. Gastroenterology 140, 1863–1867 (2011).

    Article  PubMed  Google Scholar 

  27. Matousek, P. & Stone, N. Emerging concepts in deep Raman spectroscopy of biological tissue. Analyst 134, 1058–1066 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Stallmach, A., Schmidt, C., Watson, A. & Kiesslich, R. An unmet medical need: advances in endoscopic imaging of colorectal neoplasia. J. Biophotonics 4, 482–489 (2011).

    Article  PubMed  Google Scholar 

  29. Bergholt, M. S. et al. Characterizing variability in in vivo Raman spectra of different anatomical locations in the upper gastrointestinal tract toward cancer detection. J. Biomed. Opt. 16, 037003 (2011).

    Article  PubMed  Google Scholar 

  30. Kendall, C. Evaluation of Raman probe for oesophageal cancer diagnostics. Analyst 135, 3038–3041 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Huang, Z. et al. In vivo detection of epithelial neoplasia in the stomach using image-guided Raman endoscopy. Biosens. Bioelectron 26, 383–389 (2010).

    Article  PubMed  Google Scholar 

  32. Curvers, W. L., Kiesslich, R. & Bergman, J. J. Novel imaging modalities in the detection of oesophageal neoplasia. Best Pract. Res. Clin. Gastroenterol. 22, 687–720 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Curvers, W. L. et al. Endoscopic tri-modal imaging is more effective than standard endoscopy in identifying early-stage neoplasia in Barrett's esophagus. Gastroenterology 139, 1106–1114 (2010).

    Article  PubMed  Google Scholar 

  34. Curvers, W. L. Endoscopic tri-modal imaging for detection of early neoplasia in Barrett's oesophagus: a multi-centre feasibility study using high-resolution endoscopy, autofluorescence imaging and narrow band imaging incorporated in one endoscopy system. Gut 57, 167–172 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Kuiper, T. et al. Endoscopic trimodal imaging detects colonic neoplasia as well as standard video endoscopy. Gastroenterology 140, 1887–1894 (2011).

    Article  PubMed  Google Scholar 

  36. Testoni, P. A. Optical coherence tomography. ScientificWorldJournal 7, 87–108 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kang, W. et al. Endoscopically guided spectral-domain OCT with double-balloon catheters. Opt. Express 18, 17364–17372 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hatta, W. et al. Optical coherence tomography for the staging of tumor infiltration in superficial esophageal squamous cell carcinoma. Gastrointest. Endosc. 71, 899–906 (2010).

    Article  PubMed  Google Scholar 

  39. Testoni, P. A. & Mangiavillano, B. Optical coherence tomography for bile and pancreatic duct imaging. Gastrointest. Endosc. Clin. N. Am. 19, 637–653 (2009).

    Article  PubMed  Google Scholar 

  40. Cobb, M. J. et al. Imaging of subsquamous Barrett's epithelium with ultrahigh-resolution optical coherence tomography: a histologic correlation study. Gastrointest. Endosc. 71, 223–230 (2010).

    Article  PubMed  Google Scholar 

  41. Arvanitakis, M. et al. Intraductal optical coherence tomography during endoscopic retrograde cholangiopancreatography for investigation of biliary strictures. Endoscopy 41, 696–701 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Neumann, H. Review article: in vivo imaging by endocytoscopy. Aliment. Pharmacol. Ther. 33, 1183–1193 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. ASGE Technology Committee et al. Endocytoscopy. Gastrointest. Endosc. 70, 610–613 (2009).

  44. Singh, R., Chen Yi Mei, S. L., Tam, W., Raju, D. & Ruszkiewicz, A. Real-time histology with the endocytoscope. World J. Gastroenterol. 16, 5016–5019 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rotondano, G. et al. Endocytoscopic classification of preneoplastic lesions in the colorectum. Int. J. Colorectal Dis. 25, 1111–1116 (2010).

    Article  PubMed  Google Scholar 

  46. Matysiak-Budnik, T. et al. In vivo real-time imaging of human duodenal mucosal structures in celiac disease using endocytoscopy. Endoscopy 42, 191–196 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Pohl, H. et al. Endocytoscopy for the detection of microstructural features in adult patients with celiac sprue: a prospective, blinded endocytoscopy-conventional histology correlation study. Gastrointest. Endosc. 70, 933–941 (2009).

    Article  PubMed  Google Scholar 

  48. Goetz, M., Watson, A. & Kiesslich, R. Confocal laser endomicroscopy in gastrointestinal diseases. Biophotonics 4, 498–508 (2011).

    Article  PubMed  Google Scholar 

  49. Kiesslich, R., Goetz, M. & Neurath, M. F. Virtual histology. Best Pract. Res. Clin. Gastroenterol. 22, 883–897 (2008).

    Article  PubMed  Google Scholar 

  50. Kiesslich, R. et al. Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. Gastroenterology 127, 706–713 (2004).

    Article  PubMed  Google Scholar 

  51. Wallace, M. B. & Fockens, P. Probe-based confocal laser endomicroscopy. Gastroenterology 136, 1509–1513 (2009).

    Article  PubMed  Google Scholar 

  52. Wallace, M. B. et al. The safety of intravenous fluorescein for confocal laser endomicroscopy in the gastrointestinal tract. Aliment. Pharmacol. Ther. 31, 548–552 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Sanduleanu, S. et al. In vivo diagnosis and classification of colorectal neoplasia by chromoendoscopy-guided confocal laser endomicroscopy. Clin. Gastroenterol. Hepatol. 8, 371–378 (2010).

    Article  PubMed  Google Scholar 

  54. Li, C. Q. & Li, Y. Q. Endomicroscopy of intestinal metaplasia and gastric cancer. Gastroenterol. Clin. North Am. 39, 785–796 (2010).

    Article  PubMed  Google Scholar 

  55. Canto, M. I. Endomicroscopy of Barrett's esophagus. Gastroenterol. Clin. North Am. 3 9, 759–769 (2010).

    Article  Google Scholar 

  56. Neumann, H., Kiesslich, R., Wallace, M. B. & Neurath, M. F. Confocal laser endomicroscopy: technical advances and clinical applications. Gastroenterology 139, 388–392 (2010).

    Article  PubMed  Google Scholar 

  57. Kiesslich, R. et al. Chromoscopy-guided endomicroscopy increases the diagnostic yield of intraepithelial neoplasia in ulcerative colitis. Gastroenterology 132, 874–882 (2007).

    Article  PubMed  Google Scholar 

  58. Goetz, M. & Wang, T. D. Molecular imaging in gastrointestinal endoscopy. Gastroenterology 138, 828–833e1 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Fottner, C. et al. In vivo molecular imaging of somatostatin receptors in pancreatic islet cells and neuroendocrine tumors by miniaturized confocal laser-scanning fluorescence microscopy. Endocrinology 151, 2179–2188 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Goetz, M. et al. In vivo molecular imaging of colorectal cancer with confocal endomicroscopy by targeting epidermal growth factor receptor. Gastroenterology 138, 435–446 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Hsiung, P. L. et al. Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nat. Med. 14, 454–458 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching, discussing, writing, reviewing and editing this manuscript.

Corresponding author

Correspondence to Ralf Kiesslich.

Ethics declarations

Competing interests

All authors declare an association with Pentax. R. Kiesslich has acted as a consultant, been a member of a speakers bureau and received grant or research support. P. R. Galle has been a member of a speakers bureau and received grant or research support. Both M. Goetz and A. Hoffman have been a member of a speakers bureau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiesslich, R., Goetz, M., Hoffman, A. et al. New imaging techniques and opportunities in endoscopy. Nat Rev Gastroenterol Hepatol 8, 547–553 (2011). https://doi.org/10.1038/nrgastro.2011.152

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2011.152

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing