Skip to main content

Advertisement

Log in

Short-term fitness and long-term population trends in the orchid Anacamptis morio

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The conservation of endangered species critically depends on the understanding to which degree short-term fitness and long-term trends are affected by intrinsic local conditions and external global dynamics. However, studies combining long-term demographic data with population level analyses of site conditions, genetic variation, and reproduction as well as with climatic data are still rare. Here we studied the endangered orchid Anacamptis morio, representative for species with a sub-mediterranean distribution. For populations at the northern range edge, we combined long-term monitoring data (1977–2010) with climatic data and analyzed reproductive fitness components, genetic variation, and abiotic site conditions. Reproduction was generally low as expected from the deceptive pollination system, and was positively influenced by population size and xerothermic site quality. The majority of populations showed a positive population trend, which was paralleled by an increase in spring temperature and positively affected by site quality. High levels of genetic variation were found in the populations which were at gene flow-drift equilibrium. A. morio may profit from increasing spring temperatures because of increased reproductive output. Nevertheless, whether climate change results in fitness increase or not may depend on the maintenance and provision of optimal site quality, i.e., xerothermic and nutrient poor conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ågren J (1996) Population size, pollinator limitation, and seed set in the self-incompatible herb Lythrum salicaria. Ecology 77:1779–1790

    Article  Google Scholar 

  • Bartomeus I, Ascher JS, Wagner D, Danforth BN, Colla S, Kornbluth S, Winfree R (2011) Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proc Nat Acad Sci 108:20645–20649

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt P, Edens-Meier R (2010) What we think we know vs. what we need to know about orchid pollination and conservation: Cypripedium L. as a model lineage. Bot Rev 76:204–219

    Article  Google Scholar 

  • Bizoux JP, Dainou K, Raspe O, Lutts S, Mahy G (2008) Fitness and genetic variation of Viola calaminaria, an endemic metallophyte: implications of population structure and history. Plant Biol 10:684–693

    Article  PubMed  Google Scholar 

  • Böhnert W, Hecht G, Stapperfenne H-J (1986) Orchideen des Bezirkes Halle. einst und jetzt, Dessau

    Google Scholar 

  • Bruelheide H, Lieberum K (2001) Experimental tests for determining the causes of the altitudinal distribution of Meum athamanticum Jacq. in the Harz Mountains. Flora 196:227–241

    Google Scholar 

  • Chesson P, Huntly N (1989) Short-term instabilities and long-term community dynamics. Trends Ecol Evol 4:293–298

    Article  PubMed  CAS  Google Scholar 

  • Coart E, Van Glabeke S, Petit RJ, Van Bockstaele E, Roldan-Ruiz I (2005) Range wide versus local patterns of genetic diversity in hornbeam (Carpinus betulus L.). Conserv Genet 6:259–273

    Article  CAS  Google Scholar 

  • Csergö AM, Molnar E, Garcia MB (2011) Dynamics of isolated Saponaria bellidifolia Sm. populations at northern range periphery. Popul Ecol 53:393–403

    Article  Google Scholar 

  • Dupré C, Diekmann M (1998) Prediction of occurrence of vascular plants in deciduous forests of South Sweden by means of Ellenberg indicator values. Appl Veg Sci 1:139–150

    Article  Google Scholar 

  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Goltze, Göttingen

    Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size - implications for plant conservation. Annu Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev Camb Philos Soc 81:117–142

    PubMed  Google Scholar 

  • Fay MF, Rankou H (2010) 670. Anacamptis morio. Curtis’s Bot Mag 27:100–108

    Article  Google Scholar 

  • Feehan J, Harley M, van Minnen J (2009) Climate change in Europe. 1. Impact on terrestrial ecosystems and biodiversity. A review. Agron Sustain Dev 29:409–421

    Article  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Article  Google Scholar 

  • Hanski I (1994) A practical model of metapopulation dynamics. J Anim Ecol 63:151–162

    Article  Google Scholar 

  • Hedhly A, Hormaza JI, Herrero M (2009) Global warming and sexual plant reproduction. Trends Plant Sci 14:30–36

    Article  PubMed  CAS  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  PubMed  Google Scholar 

  • Humbert J-Y, Scott MillsL, Horne JS, Dennis B (2009) A better way to estimate population trends. Oikos 118:1940–1946

    Article  Google Scholar 

  • Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: Inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–1914

    Article  Google Scholar 

  • Jacquemyn H, Brys R, Hermy M, Willems JH (2005) Does nectar reward affect rarity and extinction probabilities of orchid species? An assessment using historical records from Belgium and the Netherlands. Biol Conserv 121:257

    Article  Google Scholar 

  • Jacquemyn H, Brys R, Adriaens D, Honnay O, Roldan-Ruiz I (2009) Effects of population size and forest management on genetic diversity and structure of the tuberous orchid Orchis mascula. Conserv Genet 10:161–168

    Article  Google Scholar 

  • Jersakova J, Kindlmann P (1998) Patterns of pollinator-generated fruit set in Orchis morio (Orchidaceae). Folia Geobot 33:377–390

    Article  Google Scholar 

  • Jersakova J, Malinova T (2007) Spatial aspects of seed dispersal and seedling recruitment in orchids. New Phytol 176:237–241

    Article  PubMed  Google Scholar 

  • Jersakova J, Kindlmann P, Stritesky M (2002) Population dynamics of Orchis morio in the Czech Republic under human influence. In: Kindlmann P, Willems JH, Whigham DF (eds) Trends and fluctuations and underlying mechanisms in terrestrial orchid populations. Backhuys, Leiden, pp 224–299

    Google Scholar 

  • Jersakova J, Johnson SD, Kindlmann P (2006) Mechanisms and evolution of deceptive pollination in orchids. Biol Rev Camb Philos Soc 81:219–235

    Article  PubMed  Google Scholar 

  • Johnson SD, Peter CI, Nilsson LA, Agren J (2003) Pollination success in a deceptive orchid is enhanced by co-occurring rewarding magnet plants. Ecology 84:2919–2927

    Article  Google Scholar 

  • Jongejans E, Jorritsma-Wienk LD, Becker U, Dostal P, Milden M, de Kroon H (2010) Region versus site variation in the population dynamics of three short-lived perennials. J Ecol 98:279–289

    Article  Google Scholar 

  • Knight TM, Steets JA, Vamosi JC, Mazer SJ, Burd M, Campbell DR, Dudash MR, Johnston MO, Mitchell RJ, Ashman TL (2005) Pollen limitation of plant reproduction: pattern and process. Annu Rev Ecol Evol Syst 36:467–497

    Article  Google Scholar 

  • Kretzschmar H, Eccarius W, Dietrich H (2007) The orchid genera Anacamptis, Orchis and Neotinea. Phylogeny, taxonomy, morphology, biology, distribution, ecology and hybridisation. EchinoMedia Verlag, Bürgel

  • Kull T, Hutchings MJ (2006) A comparative analysis of decline in the distribution ranges of orchid species in Estonia and the United Kingdom. Biol Conserv 129:31

    Article  Google Scholar 

  • Lauterbach D, Ristow M, Gemeinholzer B (2011) Genetic population structure, fitness variation and the importance of population history in remnant populations of the endangered plant Silene chlorantha (Willd.) Ehrh. (Caryophyllaceae). Plant Biol 13:667–677

    Article  PubMed  CAS  Google Scholar 

  • Leimu R (2010) Habitat quality and population size as determinants of performance of two endangered hemiparasites. Ann Bot Fenn 47:1–13

    Google Scholar 

  • Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94:942–952

    Article  Google Scholar 

  • Lienert J, Fischer M, Schneller J, Diemer M (2002) Isozyme variability of the wetland specialist Swertia perennis (Gentianaceae) in relation to habitat size, isolation, and plant fitness. Am J Bot 89:801–811

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic-structure with RAPD markers. Mol Ecol 3:91–99

    Article  PubMed  CAS  Google Scholar 

  • Magnuson JJ (1990) Long-term ecological research and the invisible present. Bioscience 40:495–501

    Article  Google Scholar 

  • Menzel A, Estrella N, Fabian P (2001) Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996. Glob Change Biol 7:657–666

    Article  Google Scholar 

  • Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145

    Article  Google Scholar 

  • Morris WF, Pfister CA, Tuljapurkar S, Haridas CV, Boggs CL, Boyce MS, Bruna EM, Church DR, Coulson T, Doak DF, Forsyth S, Gaillard JM, Horvitz CC, Kalisz S, Kendall BE, Knight TM, Lee CT, Menges ES (2008) Longevity can buffer plant and animal populations against changing climatic variability. Ecology 89:19–25

    Article  PubMed  Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62

    Article  PubMed  CAS  Google Scholar 

  • Neiland MRM, Wilcock CC (1998) Fruit set, nectar reward, and rarity in the Orchidaceae. Am J Bot 85:1657–1671

    Article  PubMed  CAS  Google Scholar 

  • Nilsson LA (1984) Anthecology of Orchis morio (Orchidaceae) at its outpost in the north Nov. Act Reg Soc Sci Ups 3:167–179

    Google Scholar 

  • Oostermeijer JGB, Luijten SH, den Nijs JCM (2003) Integrating demographic and genetic approaches in plant conservation. Biol Conserv 113:389–398

    Article  Google Scholar 

  • Peakall R, Beattie AJ (1996) Ecological and genetic consequences of pollination by sexual deception in the orchid Caladenia tentactulata. Evolution 50:2207–2220

    Article  Google Scholar 

  • Pfeifer M, Wiegand K, Heinrich W, Jetschke G (2006) Long-term demographic fluctuations in an orchid species driven by weather: implications for conservation planning. J Appl Ecol 43:313–324

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Robbirt KM, Davy AJ, Hutchings MJ, Roberts DL (2011) Validation of biological collections as a source of phenological data for use in climate change studies: a case study with the orchid Ophrys sphegodes. J Ecol 99:235–241

    Article  Google Scholar 

  • Rossi W, Corrias B, Arduino P, Cianchi R, Bullini L (1992) Gene variation and gene flow in Orchis morio (Orchidaceae) from Italy. Plant Syst Evol 179:43–58

    Article  Google Scholar 

  • Scacchi R, Deangelis G, Lanzara P (1990) Allozyme variation among and within 11 Orchis species (Fam Orchidaceae), with special reference to hybridizing aptitude. Genetica 81:143–150

    Article  Google Scholar 

  • Schaffers AP, Sýkora KV (2000) Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J Veg Sci 11:225–244

    Article  Google Scholar 

  • Scopece G, Cozzolino S, Johnson SD, Schiestl FP (2010) Pollination efficiency and the evolution of specialized deceptive pollination systems. Am Nat 175:98–105

    Article  PubMed  Google Scholar 

  • Silvertown J, Franco M, Pisanty I, Mendoza A (1993) Comparative plant demography—relative importance of life-cycle components to the finite rate of increase in woody and herbaceous perennials. J Ecol 81:465–476

    Article  Google Scholar 

  • Silvertown J, Wells DA, Gillman M, Dodd ME, Robertson H, Lakhani KH (1994) Short-term effects and long-term after-effects of fertilizer application on the flowering population of green-winged orchid Orchis morio. Biol Conserv 69:191

    Article  Google Scholar 

  • Smithson A (2006) Pollinator limitation and inbreeding depression in orchid species with and without nectar rewards. New Phytol 169:419–430

    Article  PubMed  Google Scholar 

  • Sparks TH, Menzel A (2002) Observed changes in seasons: an overview. Int J Climatol 22:1715–1725

    Article  Google Scholar 

  • Steffan-Dewenter I, Münzenberg U, Tscharntke T (2001) Pollination, seed set and seed predation on a landscape scale. Proc R Soc Lond B Biol Sci 268:1685–1690

    Article  CAS  Google Scholar 

  • Vallius E, Salonen V, Kull T (2004) Factors of divergence in co-occurring varieties of Dactylorhiza incarnata (Orchidaceae). Plant Syst Evol 248:177–189

    Article  Google Scholar 

  • Vekemans X (2002) AFLP-SURV version 1.0. Distributed by the author. Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles

  • Wells TCE, Rothery P, Cox R, Bamford S (1998) Flowering dynamics of Orchis morio L. and Herminium monorchis (L.) R.Br. at two sites in eastern England. Bot J Linn Soc 126:39–48

    Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the working-groups for native orchids (AHO) of Saxony-Anhalt and Thuringia, for monitoring data, and for help with locating the populations. D. Frank made available species lists of many of the porphyry outcrops. We thank I. Geier and M. Herrmann for assistance with laboratory work. We thank J. Hanspach for help with statistical analyses and A. Kolb for helpful comments. This study was supported by the Federal Ministry of Education and Research (BMBF-FKz 01LC0618C) within the framework of BIOLOG-SUBICON (Successional Change and Biodiversity Conservation). Additionally, kind support was given by Helmholtz Impulse and Networking Fund through Helmholtz Interdisciplinary Graduate School for Environmental Research (HIGRADE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gitte Hornemann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 317 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hornemann, G., Michalski, S.G. & Durka, W. Short-term fitness and long-term population trends in the orchid Anacamptis morio . Plant Ecol 213, 1583–1595 (2012). https://doi.org/10.1007/s11258-012-0113-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-012-0113-6

Keywords

Navigation