Skip to main content

Advertisement

Log in

If You Don’t Look, You Won’t See: Intravital Multiphoton Imaging of Primary and Metastatic Breast Cancer

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

A fundamental hallmark of cancer is progression to metastasis and the growth of breast cancer metastases in lung, bone, liver and/or brain causes fatal complications. Unfortunately, the cellular and biochemical mechanisms of the metastatic process remain ill-defined. Recent application of intravital multiphoton microscopy (MP-IVM) to image fluorescently labeled cells in mouse models of cancer has allowed dynamic observation of this multi-step process at the cellular and subcellular levels. In this article, we discuss the use of MP-IVM in studies of breast cancer metastasis, as well as surgical techniques for exposing tumors prior to imaging. We also describe a versatile multiphoton microscope for imaging tumor-stroma interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

MP-IVM:

Multiphoton intravital microscopy

MPM:

Multiphoton microscopy

SHG:

Second harmonic generation

PMT:

Photomultiplier tube

FLIM:

Fluorescence-lifetime imaging microscopy

FRET:

Fluorescence resonance energy transfer

References

  1. Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147(2):275–92.

    Article  PubMed  CAS  Google Scholar 

  2. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3(6):453–8.

    Article  PubMed  CAS  Google Scholar 

  3. Nguyen DX, Bos PD, Massague J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9(4):274–84.

    Article  PubMed  CAS  Google Scholar 

  4. Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011;147(5):992–1009.

    Article  PubMed  CAS  Google Scholar 

  5. Beerling E, Ritsma L, Vrisekoop N, Derksen PW, van Rheenen J. Intravital microscopy: new insights into metastasis of tumors. J Cell Sci. 2011;124(Pt 3):299–310.

    Article  PubMed  CAS  Google Scholar 

  6. Zomer A, Beerling E, Vlug EJ, van Rheenen J. Real-time intravital imaging of cancer models. Clin Transl Oncol. 2011;13(12):848–54.

    Article  PubMed  CAS  Google Scholar 

  7. Condeelis J, Weissleder R. In vivo imaging in cancer. Cold Spring Harb Perspect Biol. 2010 Dec;2(12).

  8. Pittet MJ, Weissleder R. Intravital imaging. Cell. 2011;147(5):983–91.

    Article  PubMed  CAS  Google Scholar 

  9. Mahmood U, Tung CH, Bogdanov Jr A, Weissleder R. Near-infrared optical imaging of protease activity for tumor detection. Radiology. 1999;213(3):866–70.

    PubMed  CAS  Google Scholar 

  10. Sahai E. Illuminating the metastatic process. Nat Rev Cancer. 2007;7(10):737–49.

    Article  PubMed  CAS  Google Scholar 

  11. Giampieri S, Manning C, Hooper S, Jones L, Hill CS, Sahai E. Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol. 2009;11(11):1287–96.

    Article  PubMed  CAS  Google Scholar 

  12. Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 2004;64(19):7022–9.

    Article  PubMed  CAS  Google Scholar 

  13. Borowsky AD. Choosing a mouse model: experimental biology in context—the utility and limitations of mouse models of breast cancer. Cold Spring Harb Perspect Biol. 2011;3(9):a009670.

    Article  PubMed  Google Scholar 

  14. Jain RK, Munn LL, Fukumura D. Dissecting tumour pathophysiology using intravital microscopy. Nat Rev Cancer. 2002;2(4):266–76.

    Article  PubMed  CAS  Google Scholar 

  15. Kedrin D, Wyckoff J, Sahai E, Condeelis J, Segall JE. Imaging tumor cell movement in vivo. Curr Protoc Cell Biol. 2007 Jun;Chapter 19:Unit 19 7.

  16. Egeblad M, Ewald AJ, Askautrud HA, Truitt ML, Welm BE, Bainbridge E, et al. Visualizing stromal cell dynamics in different tumor microenvironments by spinning disk confocal microscopy. Dis Model Mechanobiol. 2008;1(2–3):155–67. discussion 65.

    Article  Google Scholar 

  17. Wyckoff J, Gligorijevic B, Entenberg D, Segall J, Condeelis J. High-resolution multiphoton imaging of tumors in vivo. Cold Spring Harb Protoc. 2011;2011(10):1167–84.

    PubMed  Google Scholar 

  18. Ahmed F, Wyckoff J, Lin EY, Wang W, Wang Y, Hennighausen L, et al. GFP expression in the mammary gland for imaging of mammary tumor cells in transgenic mice. Cancer Res. 2002;62(24):7166–9.

    PubMed  CAS  Google Scholar 

  19. Lohela M, Werb Z. Intravital imaging of stromal cell dynamics in tumors. Curr Opin Genet Dev. 2010;20(1):72–8.

    Article  PubMed  CAS  Google Scholar 

  20. Eggeling C, Volkmer A, Seidel CA. Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy. ChemPhysChem. 2005;6(5):791–804.

    Article  PubMed  CAS  Google Scholar 

  21. Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods. 2005;2(12):932–40.

    Article  PubMed  CAS  Google Scholar 

  22. Sipkins DA, Wei X, Wu JW, Runnels JM, Cote D, Means TK, et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature. 2005;435(7044):969–73.

    Article  PubMed  CAS  Google Scholar 

  23. Euler T, Hausselt SE, Margolis DJ, Breuninger T, Castell X, Detwiler PB, et al. Eyecup scope—optical recordings of light stimulus-evoked fluorescence signals in the retina. Pflugers Arch. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2009 Apr;457(6):1393–414.

    Google Scholar 

  24. Wyckoff JB, Jones JG, Condeelis JS, Segall JE. A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res. 2000;60(9):2504–11.

    PubMed  CAS  Google Scholar 

  25. Lehr HA, Leunig M, Menger MD, Nolte D, Messmer K. Dorsal skinfold chamber technique for intravital microscopy in nude mice. Am J Pathol. 1993;143(4):1055–62.

    PubMed  CAS  Google Scholar 

  26. Alexander S, Koehl GE, Hirschberg M, Geissler EK, Friedl P. Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem Cell Biol. 2008;130(6):1147–54.

    Article  PubMed  CAS  Google Scholar 

  27. Yang M, Baranov E, Wang JW, Jiang P, Wang X, Sun FX, et al. Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasis on internal organs in the fluorescent orthotopic model. Proc Natl Acad Sci U S A. 2002;99(6):3824–9.

    Article  PubMed  CAS  Google Scholar 

  28. Moy AJ, White SM, Indrawan ES, Lotfi J, Nudelman MJ, Costantini SJ, et al. Wide-field functional imaging of blood flow and hemoglobin oxygen saturation in the rodent dorsal window chamber. Microvasc Res. 2011;82(3):199–209.

    Article  PubMed  Google Scholar 

  29. Kedrin D, Gligorijevic B, Wyckoff J, Verkhusha VV, Condeelis J, Segall JE, et al. Intravital imaging of metastatic behavior through a mammary imaging window. Nat Methods. 2008;5(12):1019–21.

    Article  PubMed  CAS  Google Scholar 

  30. Looney MR, Thornton EE, Sen D, Lamm WJ, Glenny RW, Krummel MF. Stabilized imaging of immune surveillance in the mouse lung. Nat Methods. 2011;8(1):91–6.

    Article  PubMed  CAS  Google Scholar 

  31. Kreisel D, Nava RG, Li W, Zinselmeyer BH, Wang B, Lai J, et al. In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. Proc Natl Acad Sci U S A. 2010;107(42):18073–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank J. Rietdorf and S. Bundschuh (FMI) for helping us set up the MPM and R. Friedrich (FMI) and J. Stein (Theodor Kocher Institute, Bern) for helpful discussions. We thank A. de Graaff and the Hubrecht Imaging Center for their support. Research in the lab of JvR is supported by VIDI fellowships (91710330), equipment grants (175.010.2007.00) and (834.11.002) from the Dutch Organization of Scientific Research (NWO), and a grant from the Dutch Cancer Society (KWF: HUBR 2009–4621). Research in the lab of M.B-A. is supported by the Novartis Research Foundation, the European Research Council (ERC starting grant 243211-PTPsBDC), the Swiss Cancer League, and the Krebsliga Beider Basel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Bentires-Alj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonapace, L., Wyckoff, J., Oertner, T. et al. If You Don’t Look, You Won’t See: Intravital Multiphoton Imaging of Primary and Metastatic Breast Cancer. J Mammary Gland Biol Neoplasia 17, 125–129 (2012). https://doi.org/10.1007/s10911-012-9250-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-012-9250-8

Keywords

Navigation