Skip to main content

Advertisement

Log in

Exploiting mixtures of H2, CO2, and O2 for improved production of methacrylate precursor 2-hydroxyisobutyric acid by engineered Cupriavidus necator strains

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Current manufacturing of most bulk chemicals through petrochemical routes considerably contributes to common concerns over the depletion of fossil carbon sources and greenhouse gas emissions. Sustainable future production of commodities thus requires the shift to renewable feedstocks in combination with established or newly developed synthesis routes. In this study, the potential of Cupriavidus necator H16 for autotrophic synthesis of the building block chemical 2-hydroxyisobutyric acid (2-HIBA) is evaluated. A novel biosynthetic pathway was implemented by heterologous expression of the 2-hydroxyisobutyryl-coenzyme A (2-HIB-CoA) mutase from Aquincola tertiaricarbonis L108, relying on a main intermediate of strain H16’s C4 overflow metabolism, 3-hydroxybutyryl-CoA. The intention was to direct the latter to 2-HIBA instead or in addition to poly-3-hydroxybutyrate (PHB). Autotrophic growth and 2-HIBA (respectively, PHB) synthesis of wild-type and PHB-negative mutant strains were investigated producing maximum 2-HIBA titers of 3.2 g L−1 and maximum specific 2-HIBA synthesis rates (q 2-HIBA) of about 16 and 175 μmol g−1 h−1, respectively. The obtained specific productivity was the highest reported to date for mutase-dependent 2-HIBA synthesis from heterotrophic and autotrophic substrates. Furthermore, expression of a G protein chaperone (MeaH) in addition to the 2-HIB-CoA mutase subunits yielded improved productivity. Analyzing the inhibition of growth and product synthesis due to substrate availability and product accumulation revealed a strong influence of 2-HIBA, when cells were cultivated at high titers. Nevertheless, the presented results imply that at the time the autotrophic synthesis route is superior to thus far established heterotrophic routes for production of 2-HIBA with C. necator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrecht S, Harrington P, Iding H, Karpf M, Trussardi R, Wirz B, Zutter U (2004) The synthetic development of the anti-influenza neuraminidase inhibitor oseltamivir phosphate (Tamiflu®): a challenge for synthesis & process research. CHIMIA Int J Chem 58(9):621–629. doi:10.2533/000942904777677605

    CAS  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54(4):450–472

    PubMed Central  CAS  PubMed  Google Scholar 

  • Babel W, Ackermann JU, Breuer U (2001) Physiology, regulation, and limits of the synthesis of poly(3HB). Adv Biochem Eng Biot 71:125–157

    CAS  Google Scholar 

  • Bartsev A, Baucher MA, Miguet C (2010) Trends in technology applications. Paper presented at the OECD Workshop on “Outlook on Industrial Biotechnology”, Vienna, Austria

  • Bauer W Jr. (2002) Methacrylic acid and derivatives. In: Ullmann’s encyclopedia of industrial chemistry. Vol. 21. 6th ed. Weinheim: Wiley-VCH; pp. 585–597

  • Beales N (2004) Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Compr Rev Food Sci Food Saf 3(1):1–20. doi:10.1111/j.1541-4337.2004.tb00057.x

    CAS  Google Scholar 

  • Bearson S, Bearson B, Foster JW (1997) Acid stress responses in enterobacteria. FEMS Microbiol Lett 147(2):173–180

    CAS  PubMed  Google Scholar 

  • Boot IR, Cash P, O’Byrne C (2002) Sensing and adapting to acid stress. Antonie Van Leeuwenhoek 81(1–4):33–42

    PubMed  Google Scholar 

  • Bowien B, Schlegel HG (1981) Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. Annu Rev Microbiol 35:405–452

    CAS  PubMed  Google Scholar 

  • Brigham C, Kurosawa K, Rha C, Sinskey A (2011) Bacterial carbon storage to value added products. Appl Microbiol Biotechnol 83(5):S3–S002

    Google Scholar 

  • Brigham CJ, Zhila N, Shishatskaya E, Volova TG, Sinskey AJ (2012) Manipulation of Ralstonia eutropha carbon storage pathways to produce useful bio-based products. Subcell Biochem 64:343–366

    CAS  PubMed  Google Scholar 

  • Budde CF, Riedel SL, Hübner F, Risch S, Popovic MK, Rha C, Sinskey AJ (2011) Growth and polyhydroxybutyrate production by Ralstonia eutropha in emulsified plant oil medium. Appl Microbiol Biotechnol 89(5):1611–1619

    CAS  PubMed  Google Scholar 

  • Burgdorf T, van der Linden E, Bernhard M, Yin QY, Back JW, Hartog AF, Muijsers AO, de Koster CG, Albracht SP, Friedrich B (2005) The soluble NAD+-reducing [NiFe]-hydrogenase from Ralstonia eutropha H16 consists of six subunits and can be specifically activated by NADPH. J Bacteriol 187(9):3122–3132. doi:10.1128/JB.187.9.3122-3132.2005

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cao Y, Lin X (2011) Metabolically engineered Escherichia coli for biotechnological production of four-carbon 1,4-dicarboxylic acids. J Ind Microbiol Biot 38(6):649–656

    CAS  Google Scholar 

  • Chandran SS, Yi J, Draths KM, von Daeniken R, Weber W, Frost JW (2003) Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Biotechnol Prog 19(3):808–814

    CAS  PubMed  Google Scholar 

  • Cotter PD, Hill C (2003) Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol R MMBR 67(3):429–453

    CAS  Google Scholar 

  • Cruz MV, Paiva A, Lisboa P, Freitas F, Alves VD, Simoes P, Barreiros S, Reis MA (2014) Production of polyhydroxyalkanoates from spent coffee grounds oil obtained by supercritical fluid extraction technology. Bioresour Technol 157:360–363

    CAS  PubMed  Google Scholar 

  • Diez-Gonzalez F, Russell JB (1997) Effects of carbonylcyanide-m-chlorophenylhydrazone (CCCP) and acetate on Escherichia coli O157:H7 and K-12: uncoupling versus anion accumulation. FEMS Microbiol Lett 151(1):71–76. doi:10.1111/j.1574-6968.1997.tb10396.x

    CAS  PubMed  Google Scholar 

  • Draths KM, Frost JW (1994) Environmentally compatible synthesis of adipic acid from D-glucose. J Am Chem Soc 116(1):399–400. doi:10.1021/ja00080a057

    CAS  Google Scholar 

  • Eggers J, Steinbüchel A (2013) Poly(3-hydroxybutyrate) degradation in Ralstonia eutropha H16 is mediated stereoselectively to (S)-3-hydroxybutyryl coenzyme A (CoA) via crotonyl-CoA. J Bacteriol 195(14):3213–3223

    PubMed Central  CAS  PubMed  Google Scholar 

  • Emptage M, Haynie SL, Laffend LA, Pucci JP, Whited G (2003) Process for the biological production of 1,3-propanediol with high titer. Patent US6514733 B1

  • Erickson B, Nelson JE, Winters P (2012) Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnol J 7(2):176–185

    PubMed Central  CAS  PubMed  Google Scholar 

  • Evonik Industries AG (2013) Bacteria like the taste of syngas http://corporate.evonik.com/en/media/search/pages/news-details.aspx?newsid=40331. Accessed 28 Aug 2014

  • Foster JW (1999) When protons attack: microbial strategies of acid adaptation. Curr Opin Microbiol 2(2):170–174

    CAS  PubMed  Google Scholar 

  • Goyal N, Widiastuti H, Karimi IA, Zhou Z (2014) A genome-scale metabolic model of Methanococcus maripaludis S2 for CO2 capture and conversion to methane. Mol Biosyst 10(5):1043–1054

    CAS  PubMed  Google Scholar 

  • Grime JMA, Edwards MA, Rudd NC, Unwin PR (2008) Quantitative visualization of passive transport across bilayer lipid membranes. Proc Natl Acad Sci U S A. doi:10.1073/pnas.0803720105

    Google Scholar 

  • Grousseau E, Blanchet E, Deleris S, Albuquerque MG, Paul E, Uribelarrea JL (2014a) Phosphorus limitation strategy to increase propionic acid flux towards 3-hydroxyvaleric acid monomers in Cupriavidus necator. Bioresour Technol 153:206–215

    CAS  PubMed  Google Scholar 

  • Grousseau E, Lu J, Gorret N, Guillouet SE, Sinskey AJ (2014b) Isopropanol production with engineered Cupriavidus necator as bioproduction platform. Appl Microbiol Biotechnol 98(9):4277–4290. doi:10.1007/s00253-014-5591-0

    CAS  PubMed  Google Scholar 

  • Haas T, Schiemann Y, Przybylski D, Rohwerder T, Müller RH, Harms H (2013) Biotechnological 2-hydroxyisobutyric acid production. Patent WO 2013186340 A1(PCT/EP2013/062336)

  • Heinzle E, Lafferty RM (1980) Continuous mass spectrometric measurement of dissolved H2, O2, and CO2 during chemolithoautotrophic growth of Alcaligenes eutrophus strain H 16. Euro J Appl Microbiol Biotechnol 11(1):17–22. doi:10.1007/bf00514073

    CAS  Google Scholar 

  • Heipieper HJ, Meinhardt F, Segura A (2003) The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adapti Appl Microbiol Biotechnol. FEMS Microbiol Lett 229(1):1–7

    CAS  PubMed  Google Scholar 

  • Henriksen CM, Nielsen J, Villadsen J (1998) Modelling of the protonophoric uncoupling by phenoxyacetic acid of the plasma membrane potential of Penicillium chrysogenum. Biotechnol Bioeng 60(6):761–767

    CAS  PubMed  Google Scholar 

  • Herrero A, Gomez R, Snedecor B, Tolman C, Roberts M (1985) Growth inhibition of Clostridium thermocellum by carboxylic acids: a mechanism based on uncoupling by weak acids. Appl Microbiol Biotechnol 22(1):53–62. doi:10.1007/bf00252157

    CAS  Google Scholar 

  • Höfel T, Wittmann E, Reinecke L, Weuster-Botz D (2010) Reaction engineering studies for the production of 2-hydroxyisobutyric acid with recombinant Cupriavidus necator H16. Appl Microbiol Biotechnol 88(2):477–484

    Google Scholar 

  • Ishizaki A, Tanaka K (1990) Batch culture of Alcaligenes eutrophus ATCC 17697T using recycled gas closed circuit culture system. J Ferment Bioeng 69(3):170–174. doi:10.1016/0922-338x(90)90041-t

    CAS  Google Scholar 

  • Ishizaki A, Tanaka K (1991) Production of poly-β-hydroxybutyric acid from carbon dioxide by Alcaligenes eutrophus ATCC17697T. J Ferment Bioeng 71(4):254–257. doi:10.1016/0922-338x(91)90277-n

    CAS  Google Scholar 

  • Ishizaki A, Tanaka K, Taga N (2001) Microbial production of poly-D-3-hydroxybutyrate from CO2. Appl Microbiol Biotechnol 57(1–2):6–12

    CAS  PubMed  Google Scholar 

  • Jajesniak P, Omar Ali H, Wong T (2014) Carbon dioxide capture and utilization using biological systems: opportunities and challenges. J Bioprocess Biotech 4(155):2

    Google Scholar 

  • Jarboe LR, Royce LA, Liu P (2013) Understanding biocatalyst inhibition by carboxylic acids. Front Microbiol 4:272, eCollection 2013

    PubMed Central  PubMed  Google Scholar 

  • Jeon J-M, Brigham C, Kim Y-H, Kim H-J, Yi D-H, Kim H, Rha C, Sinskey A, Yang Y-H (2014) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) from butyrate using engineered Ralstonia eutropha. Appl Microbiol Biotechnol:1–9 doi:10.1007/s00253-014-5617-7

  • Kamm B (2007) Production of platform chemicals and synthesis gas from biomass. Angew Chem Int Ed 46(27):5056

    CAS  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166(1):175–176. doi:10.1016/0378-1119(95)00584-1

    CAS  PubMed  Google Scholar 

  • Laffend LA, Nagarajan V, Nakamura CE (1997) Bioconversion of a fermentable carbon source to 1,3-propanediol by a single microorganism. Patent US5686276 A(440,293)

  • Latif H, Zeidan AA, Nielsen AT, Zengler K (2014) Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms. Curr Opin Biotech 27(0):79–87. doi:10.1016/j.copbio.2013.12.001

    CAS  PubMed  Google Scholar 

  • Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49(1):1–14

    CAS  PubMed  Google Scholar 

  • Lee A (2014) Catalysing sustainable fuel and chemical synthesis. Appl Petrochem Res:1–21 doi:10.1007/s13203-014-0056-z

  • Lee JN, Shin HD, Lee YH (2003) Metabolic engineering of pentose phosphate pathway in Ralstonia eutropha for enhanced biosynthesis of poly-β-hydroxybutyrate. Biotechnol Progr 19(5):1444–1449

    CAS  Google Scholar 

  • Lee WH, Loo CY, Nomura CT, Sudesh K (2008) Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors. Bioresour Technol 99(15):6844–6851. doi:10.1016/j.biortech.2008.01.051

    CAS  PubMed  Google Scholar 

  • Lenz O, Schwartz E, Dernedde J, Eitinger M, Friedrich B (1994) The Alcaligenes eutrophus H16 hoxX gene participates in hydrogenase regulation. J Bacteriol 176(14):4385–4393

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, Malati P, Huo YX, Cho KM, Liao JC (2012) Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335(6076):1596. doi:10.1126/science.1217643

    CAS  PubMed  Google Scholar 

  • Loffhagen N, Härtig C, Babel W (2004) Pseudomonas putida NCTC 10936 balances membrane fluidity in response to physical and chemical stress by changing the saturation degree and the trans/cis ratio of fatty acids. Biosci Biotechnol Biochem 68(2):317–323

    CAS  PubMed  Google Scholar 

  • Lu J, Brigham C, Gai C, Sinskey A (2012) Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha. Appl Microbiol Biotechnol 96(1):283–297

    CAS  PubMed  Google Scholar 

  • Lütte S, Pohlmann A, Zaychikov E, Schwartz E, Becher JR, Heumann H, Friedrich B (2012) Autotrophic production of stable-isotope-labeled arginine in Ralstonia eutropha strain H16. Appl Environ Microbiol 78(22):7884–7890

    PubMed Central  PubMed  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol R MMBR 63(1):21–53

    CAS  Google Scholar 

  • Mekonnen T, Mussone P, Khalil H, Bressler D (2013) Progress in bio-based plastics and plasticizing modifications. J Mater Chem A 1(43):13379–13398. doi:10.1039/c3ta12555f

    CAS  Google Scholar 

  • Mifune J, Nakamura S, Fukui T (2010) Engineering of pha operon on Cupriavidus necator chromosome for efficient biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from vegetable oil. Polym Degrad Stabil 95(8):1305–1312. doi:10.1016/j.polymdegradstab.2010.02.026

    CAS  Google Scholar 

  • Mira NP, Teixeira MC (2013) Microbial mechanisms of tolerance to weak acid stress. Front Microbiol 4:416

    PubMed Central  PubMed  Google Scholar 

  • Muffler K, Ulber R (2008) Use of renewable raw materials in the chemical industry—beyond sugar and starch. Chem Eng Technol 31(5):638–646. doi:10.1002/ceat.200800066

    CAS  Google Scholar 

  • Müller RH, Babel W (1996) Measurement of growth at very low rates (μ > = 0), an approach to study the energy requirement for the survival of Alcaligenes eutrophus JMP 134. Appl Environ Microbiol 62(1):147–151

    PubMed Central  PubMed  Google Scholar 

  • Müller RH, Rohwerder T, Harms H (2008) Degradation of fuel oxygenates and their main intermediates by Aquincola tertiaricarbonis L108. Microbiology 154(Pt 5):1414–1421. doi:10.1099/mic. 0.2007/014159-0

    PubMed  Google Scholar 

  • Müller J, MacEachran D, Burd H, Sathitsuksanoh N, Bi C, Yeh YC, Lee TS, Hillson NJ, Chhabra SR, Singer SW, Beller HR (2013) Engineering of Ralstonia eutropha H16 for autotrophic and heterotrophic production of methyl ketones. Appl Environ Microbiol 79(14):4433–4439

    PubMed Central  PubMed  Google Scholar 

  • Murphy AC (2011) Metabolic engineering is key to a sustainable chemical industry. Nat Prod Rep 28(8):1406–1425. doi:10.1039/c1np00029b

    CAS  PubMed  Google Scholar 

  • Nordhoff S, Höcker H, Gebhardt H (2007) Renewable resources in the chemical industry—breaking away from oil? Biotechnol J 2(12):1505–1513. doi:10.1002/biot.200700132

    CAS  PubMed  Google Scholar 

  • Padovani D, Banerjee R (2009) A G-protein editor gates coenzyme B12 loading and is corrupted in methylmalonic aciduria. Proc Natl Acad Sci U S A 106(51):21567–21572

    PubMed Central  CAS  PubMed  Google Scholar 

  • Park JM, Kim TY, Lee SY (2011) Genome-scale reconstruction and in silico analysis of the Ralstonia eutropha H16 for polyhydroxyalkanoate synthesis, lithoautotrophic growth, and 2-methyl citric acid production. BMC Syst Biol 5(1):101

    PubMed Central  CAS  PubMed  Google Scholar 

  • Park SJ, Lee TW, Lim SC, Kim TW, Lee H, Kim MK, Lee SH, Song BK, Lee SY (2012) Biosynthesis of polyhydroxyalkanoates containing 2-hydroxybutyrate from unrelated carbon source by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 93(1):273–283. doi:10.1007/s00253-011-3530-x

    PubMed  Google Scholar 

  • Pötter M, Madkour MH, Mayer F, Steinbüchel A (2002) Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16. Microbiology 148(Pt 8):2413–2426

    PubMed  Google Scholar 

  • Przybylski D, Rohwerder T, Harms H, Müller RH (2012) Third-generation feed stocks for the clean and sustainable biotechnological production of bulk chemicals: synthesis of 2-hydroxyisobutyric acid. Energ Sustain Soc 2(1):11

    Google Scholar 

  • Przybylski D, Rohwerder T, Harms H, Yaneva N, Müller RH (2013) Synthesis of the building block 2-hydroxyisobutyrate from fructose and butyrate by Cupriavidus necator H16. Appl Microbiol Biotechnol 97(20):8875–8885

    CAS  PubMed  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489

    CAS  PubMed  Google Scholar 

  • Ran N, Zhao L, Chen Z, Tao J (2008) Recent applications of biocatalysis in developing green chemistry for chemical synthesis at the industrial scale. Green Chem 10(4):361–372. doi:10.1039/b716045c

    CAS  Google Scholar 

  • Reinecke F, Steinbüchel A (2009) Ralstonia eutropha strain H16 as a model organism for PHA metabolism and for biotechnological production of technically interesting polymers. J Mol Microbiol Biotechnol 16:91–108

    CAS  PubMed  Google Scholar 

  • Reinecke L, Schaffer S, Marx A, Pötter M, Haas T (2009) Recombinant cell producing 2-hydroxyisobutyric acid. Patent WO/2009/156214

  • Reinecke L, Schaffer S, Köhler T, Thiessenhusen A, Marx A, Buchhaupt M (2011) Use of a protein homologous to a MeaB protein for increasing the enzymatic activity of a 3-hydroxycarboxylic acid-CoA mutase. Patent WO 2011057871:A2

  • Repaske R (1962) Nutritional requirements for Hydrogenomonas eutropha. J Bacteriol 83(2):418–426

    PubMed Central  CAS  PubMed  Google Scholar 

  • Repaske R, Mayer R (1976) Dense autotrophic cultures of Alcaligenes eutrophus. Appl Environ Microbiol 32(4):592–597

    PubMed Central  CAS  PubMed  Google Scholar 

  • Riedel SL, Bader J, Brigham CJ, Budde CF, Yusof ZA, Rha C, Sinskey AJ (2012) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Ralstonia eutropha in high cell density palm oil fermentations. Biotechnol Bioeng 109(1):74–83

    CAS  PubMed  Google Scholar 

  • Rohwerder T, Müller RH (2009) Contribution of biotechnology on the production of methacrylate. Paper presented at the “European Coatings Conference”, May 2009, Berlin, Germany

  • Rohwerder T, Müller RH (2010) Biosynthesis of 2-hydroxyisobutyric acid (2-HIBA) from renewable carbon. Microb Cell Fact 9:13

    PubMed Central  PubMed  Google Scholar 

  • Rohwerder T, Breuer U, Benndorf D, Lechner U, Müller RH (2006) The alkyl tert.-butyl ether intermediate 2-hydroxyisobutyrate is degraded via a novel cobalamin-dependent mutase pathway. Appl Environ Microbiol 72(6):4128–4135

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rohwerder T, Harms H, Müller RH (2011) Synthesis of poly-3-hydroxybutyrate reduces maintenance demand in bacteria growing slowly on methyl tert.-butyl ether. J Bioremediat Biodegrad S1:003

    Google Scholar 

  • Royce LA, Boggess E, Fu Y, Liu P, Shanks JV, Dickerson J, Jarboe LR (2014) Transcriptomic analysis of carboxylic acid challenge in Escherichia coli: beyond membrane damage. PLoS One 9(2):e89580. doi:10.1371/journal.pone.0089580

    PubMed Central  PubMed  Google Scholar 

  • Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26(2):100–108

    CAS  PubMed  Google Scholar 

  • Schlegel HG, Kaltwasser H, Gottschalk G (1961) A submersion method for culture of hydrogen-oxidizing bacteria: growth physiological studies. Arch Mikrobiol 38:209–222

    CAS  PubMed  Google Scholar 

  • Schlegel HG, Lafferty R, Krauss I (1970) The isolation of mutants not accumulating poly-β-hydroxybutyric acid. Arch Mikrobiol 71(3):283–294

    CAS  PubMed  Google Scholar 

  • Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-β-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170(12):5837–5847

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schuster E, Schlegel HG (1967) Chemolithotrophic growth of Hydrogenomonas H16 using electrolytic production of hydrogen and oxygen in a chemostat. Arch Mikrobiol 58(4):380–385

    CAS  PubMed  Google Scholar 

  • Schwartz E, Henne A, Cramm R, Eitinger T, Friedrich B, Gottschalk G (2003) Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H2-based lithoautotrophy and anaerobiosis. J Mol Biol 332(2):369–383

    CAS  PubMed  Google Scholar 

  • Schwartz E, Voigt B, Zuhlke D, Pohlmann A, Lenz O, Albrecht D, Schwarze A, Kohlmann Y, Krause C, Hecker M, Friedrich B (2009) A proteomic view of the facultatively chemolithoautotrophic lifestyle of Ralstonia eutropha H16. Proteomics 9(22):5132–5142. doi:10.1002/pmic.200900333

    CAS  PubMed  Google Scholar 

  • Seputiene V, Daugelavicius A, Suziedelis K, Suziedeliene E (2006) Acid response of exponentially growing Escherichia coli K-12. Microbiol Res 161(1):65–74

    CAS  PubMed  Google Scholar 

  • Siegel RS, Ollis DF (1984) Kinetics of growth of the hydrogen-oxidizing bacterium Alcaligenes eutrophus (ATCC 17707) in chemostat culture. Biotechnol Bioengin 26(7):764–770. doi:10.1002/bit.260260721

    CAS  Google Scholar 

  • Sinskey AJ (1981) Mode of action and effective application. In: Tilbury RH (ed) Developments in Food Preservatives. Applied Science Publishers, Barking: Essex, England, pp 111–136

  • Slater S, Houmiel KL, Tran M, Mitsky TA, Taylor NB, Padgette SR, Gruys KJ (1998) Multiple β-ketothiolases mediate poly(β-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J Bacteriol 180(8):1979–1987

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sonnleitner B, Heinzle E, Braunegg G, Lafferty RM (1979) Formal kinetics of poly-β-hydroxybutyric acid (PHB) production in Alcaligenes eutrophus H 16 and Mycoplana rubra R 14 with respect to the dissolved oxygen tension in ammonium-limited batch cultures. Appl Microbiol Biotechnol 7(1):1–10. doi:10.1007/bf00522473

    CAS  Google Scholar 

  • Sousa MJ, Ludovico P, Rodrigues F, Leão C, Côrte-Real M (2012) Stress and cell death in yeast induced by acetic acid. In: Bubulya P (ed) Cell Metabolism—Cell Homeostasis and Stress Response. InTech

  • Spoljaric IV, Lopar M, Koller M, Muhr A, Salerno A, Reiterer A, Malli K, Angerer H, Strohmeier K, Schober S, Mittelbach M, Horvat P (2013) Mathematical modeling of poly[(R)-3-hydroxyalkanoate] synthesis by Cupriavidus necator DSM 545 on substrates stemming from biodiesel production. Bioresour Technol 133:482–494

    PubMed  Google Scholar 

  • Stanley JNG, Selva M, Masters AF, Maschmeyer T, Perosa A (2013) Reactions of p-coumaryl alcohol model compounds with dimethyl carbonate. towards the upgrading of lignin building blocks. Green Chem 15(11):3195–3204. doi:10.1039/c3gc40334c

    CAS  Google Scholar 

  • Steinbüchel A, Schlegel HG (1989) Excretion of pyruvate by mutants of Alcaligenes eutrophus, which are impaired in the accumulation of poly(β-hydroxybutyric acid) (PHB), under conditions permitting synthesis of PHB. Appl Microbiol Biotechnol 31(2):168–175

    Google Scholar 

  • Stickler M, Rhein T. (2002) Polymethacrylates. In: Ullmann’s encyclopedia of industrial chemistry. Vol. 28. 6th ed. Weinheim: Wiley-VCH; pp. 377–391

  • Stowers CC, Cox BM, Rodriguez BA (2014) Development of an industrializable fermentation process for propionic acid production. J Ind Microbiol Biot 41(5):837–852

    CAS  Google Scholar 

  • Tanaka K, Ishizaki A (1994) Production of poly-d-3-hydroxybutyric acid from carbon dioxide by a two-stage culture method employing Alcaligenes eutrophus ATCC17697T. J Ferment Bioeng 77(4):425–427

    CAS  Google Scholar 

  • Tanaka K, Ishizaki A, Kanamaru T, Kawano T (1995) Production of poly(D-3-hydroxybutyrate) from CO2, H2, and O2 by high cell density autotrophic cultivation of Alcaligenes eutrophus. Biotechnol Bioeng 45(3):268–275. doi:10.1002/bit.260450312

    CAS  PubMed  Google Scholar 

  • Tirado-Acevedo O, Chinn MS, Grunden AM (2010) Production of biofuels from synthesis gas using microbial catalysts. Adv Appl Microbiol 70:57–92. doi:10.1016/S0065-2164(10)70002-2

    CAS  PubMed  Google Scholar 

  • Vandamme P, Coenye T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Micr 54(Pt 6):2285–2289. doi:10.1099/ijs. 0.63247-0

    Google Scholar 

  • Volova TG, Kalacheva GS, Altukhova OV (2002) Autotrophic synthesis of polyhydroxyalkanoates by the bacteria Ralstonia eutropha in the presence of carbon monoxide. Appl Microbiol Biotechnol 58(5):675–678. doi:10.1007/s00253-002-0941-8

    CAS  PubMed  Google Scholar 

  • Volova TG, Zhila NO, Kalacheva GS, Sokolenko VA, Sinski EJ (2011) Synthesis of 3-hydroxybutyrate-co-4-hydroxybutyrate copolymers by hydrogen-oxidizing bacteria. Appl Biochem Microbiol 47(5):494–499. doi:10.1134/s0003683811050152

    CAS  Google Scholar 

  • Volova TG, Kiselev EG, Shishatskaya EI, Zhila NO, Boyandin AN, Syrvacheva DA, Vinogradova ON, Kalacheva GS, Vasiliev AD, Peterson IV (2013a) Cell growth and accumulation of polyhydroxyalkanoates from CO2 and H2 of a hydrogen-oxidizing bacterium, Cupriavidus eutrophus B-10646. Bioresour Technol 146:215–222

    CAS  PubMed  Google Scholar 

  • Volova TG, Zhila NO, Kalacheva GS, Brigham CJ, Sinskey AJ (2013b) Effects of intracellular poly(3-hydroxybutyrate) reserves on physiological-biochemical properties and growth of Ralstonia eutropha. Res Microbiol 164(2):164–171

    CAS  PubMed  Google Scholar 

  • Wang J, Yu J (2000) Kinetic analysis on inhibited growth and poly(3-hydroxybutyrate) formation of Alcaligenes eutrophus on acetate under nutrient-rich conditions. Process Biochem 36(3):201–207. doi:10.1016/s0032-9592(00)00169-2

    CAS  Google Scholar 

  • Waste-management-world.com (2011) Syngas from waste gasification processed by microbes. www.waste-management-world.com. Accessed 28 Aug 2014

  • Werpy T, Petersen B (2004) Top value added chemicals from biomass. In: Werpy T (ed) Petersen B (eds), vol 1. US Dept. of Energy, Oak Ridge, pp 1–76

    Google Scholar 

  • Wilde E (1962) Untersuchungen über Wachstum und Speicherstoffsynthese von Hydrogenomonas. Arch Mikrobiol 43(2):109-&

  • Willke T, Vorlop KD (2004) Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl Microbiol Biotechnol 66(2):131–142

    CAS  PubMed  Google Scholar 

  • Yamane T (1993) Yield of poly-D(−)-3-hydroxybutyrate from various carbon sources: a theoretical study. Biotechnol Bioeng 41(1):165–170

    CAS  PubMed  Google Scholar 

  • Yaneva N, Schuster J, Schäfer F, Lede V, Przybylski D, Paproth T, Harms H, Müller RH, Rohwerder T (2012) A bacterial acyl-CoA mutase specifically catalyzes coenzyme B12-dependent isomerization of 2-hydroxyisobutyryl-CoA and (S)-3-hydroxybutyryl-CoA. J Biol Chem 287(19):15502–15511

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yu J (2014) Bio-based products from solar energy and carbon dioxide. Trends Biotechnol 32(1):5–10

    PubMed  Google Scholar 

  • Yu J, Wang J (2001) Metabolic flux modeling of detoxification of acetic acid by Ralstonia eutropha at slightly alkaline pH levels. Biotechnol Bioeng 73(6):458–464

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This investigation was financed by the Fachagentur Nachwachsende Rohstoffe e.V. (FNR)/Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV), grant FKZ 22027805. The authors are furthermore grateful to Evonik Industries AG for the support. The work was carried out under the mentoring of the HIGRADE Graduate School. We also would like to thank Monika Neytschev and Rita Remer for skilled technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise Przybylski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 891 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Przybylski, D., Rohwerder, T., Dilßner, C. et al. Exploiting mixtures of H2, CO2, and O2 for improved production of methacrylate precursor 2-hydroxyisobutyric acid by engineered Cupriavidus necator strains. Appl Microbiol Biotechnol 99, 2131–2145 (2015). https://doi.org/10.1007/s00253-014-6266-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6266-6

Keywords

Navigation