Skip to main content
Log in

Anaerobically grown Thauera aromatica, Desulfococcus multivorans, Geobacter sulfurreducens are more sensitive towards organic solvents than aerobic bacteria

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of seven important pollutants and three representative organic solvents on growth of Thauera aromatica K172, as reference strain for nitrate-reducing anaerobic bacteria, was investigated. Toxicity in form of the effective concentrations (EC50) that led to 50% growth inhibition of potential organic pollutants such as BTEX (benzene, toluene, ethylbenzene, and xylene), chlorinated phenols and aliphatic alcohols on cells was tested under various anaerobic conditions. Similar results were obtained for Geobacter sulfurreducens and Desulfococcus multivorans as representative for Fe3+-reducing and sulphate-reducing bacteria, respectively, leading to a conclusion that anaerobic bacteria are far more sensitive to organic pollutants than aerobic ones. Like for previous studies for aerobic bacteria, yeast and animal cell cultures, a correlation between toxicity and hydrophobicity (log P values) of organic compounds for different anaerobic bacteria was ascertained. However, compared to aerobic bacteria, all three tested anaerobic bacteria were shown to be about three times more sensitive to the tested substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anders HJ, Kaetzke A, Kampfer P, Ludwig W, Fuchs G (1995) Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int J Syst Bacteriol 45:327–333

    Article  CAS  PubMed  Google Scholar 

  • Bettmann H, Rehm HJ (1984) Degradation of phenol by polymer entrapped microorganisms. Appl Microbiol Biotechnol 20:285–290

    Article  CAS  Google Scholar 

  • Boll M, Fuchs G, Heider J (2002) Anaerobic oxidation of aromatic compounds and hydrocarbons. Curr Opin Chem Biol 6:604–611

    Article  CAS  PubMed  Google Scholar 

  • Butler JE, Glaven RH, Esteve-Nunez A, Nunez C, Shelobolina ES, Bond DR, Lovley DR (2006) Genetic characterization of a single bifunctional enzyme for fumarate reduction and succinate oxidation in Geobacter sulfurreducens and engineering of fumarate reduction in Geobacter metallireducens. J Bacteriol 188:450–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caccavo F, Lonergan DJ, Lovley DR, Davis M, Stolz JF, McInerney MJ (1994) Geobacter sulfurreducens sp-nov, a hydrogen-oxidizing and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752–3759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ennik-Maarsen KA, Louwerse A, Roelofsen W, Stams AJM (1998) Influence of monochlorophenols on methanogenic activity in granular sludge. Water Res 32:2977–2982

    Article  CAS  Google Scholar 

  • Evans PJ, Mang DT, Kwang Shin K, Young LY (1991) Anaerobic degradation of toluene by a denitrifying bacterium. Appl Environ Microbiol 57:1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson J, Harwood CS (2002) Metabolic diversity in aromatic compound utilization by anaerobic microbes. Ann Rev Microbiol 56:345–369

    Article  CAS  Google Scholar 

  • Griebler C, Safinowski M, Vieth A, Richnow HH, Meckenstock RU (2004a) Combined application of stable carbon isotope analysis and specific metabolites determination for assessing in situ degradation of aromatic hydrocarbons in a tar oil-contaminated aquifer. Environ Sci Technol 38:617–631

    Article  CAS  PubMed  Google Scholar 

  • Griebler C, Safinowski M, Vieth A, Richnow HH, Meckenstock RU (2004b) Combined application of stable carbon isotope analysis and specific metabolites determination for assessing in situ degradation of aromatic hydrocarbons in a tar oil-contaminated aquifer. Environ Sci Technol 38:617–631

    Article  CAS  PubMed  Google Scholar 

  • Hage A, Schoemaker HE, Wever R, Zennaro E, Heipieper HJ (2001) Determination of the toxicity of several aromatic carbonylic compounds and their reduced derivatives on Phanerochaete chrysosporium using a Pseudomonas putida test system. Biotechnol Bioeng 73:69–73

    Article  CAS  PubMed  Google Scholar 

  • Harms G, Zengler K, Rabus R, Aeckersberg F, Minz D, Rossello-Mora R, Widdel F (1999) Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria. Appl Environ Microbiol 65:999–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmans S, Smits JP, van der Werf MJ, Volkering F, de Bont JAM (1989) Metabolism of styrene oxide and 2-phenylethanol in the styrene-degrading Xanthobacter strain 124X. Appl Environ Microbiol 55:2850–2855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harwood CS, Burchhardt G, Herrmann H, Fuchs G (1998) Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiol Rev 22:439–458

    Article  CAS  Google Scholar 

  • Heider J, Spormann AM, Beller HR, Widdel F (1998) Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev 22:459–473

    Article  CAS  Google Scholar 

  • Heipieper HJ, de Bont JAM (1994) Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of the fatty acid composition of membranes. Appl Environ Microbiol 60:4440–4444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, de Bont JAM (1994) Mechanisms behind resistance of whole cells to toxic organic solvents. Trends Biotechnol 12:409–415

    Article  CAS  Google Scholar 

  • Heipieper HJ, Loffeld B, Keweloh H, de Bont JAM (1995) The cis/trans isomerization of unsaturated fatty acids in Pseudomonas putida S12: an indicator for environmental stress due to organic compounds. Chemosphere 30:1041–1051

    Article  CAS  Google Scholar 

  • Heipieper HJ, Neumann G, Cornelissen S, Meinhardt F (2007) Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol 74:961–973

    Article  CAS  PubMed  Google Scholar 

  • Herrero AA, Gomez RF, Roberts MF (1982) Ethanol-induced changes in the membrane lipid-composition of Clostridium thermocellum. Biochim Biophys Acta 693:195–204

    Article  CAS  PubMed  Google Scholar 

  • Ingram LO (1976) Adaptation of membrane lipids to alcohols. J Bacteriol 125:670–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingram LO (1977) Changes in lipid composition of Escherichia coli resulting from growth with organic solvents and with food additives. Appl Environ Microbiol 33:1233–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabelitz N, Santos PM, Heipieper HJ (2003) Effect of aliphatic alcohols on growth and degree of saturation of membrane lipids in Acinetobacter calcoaceticus. FEMS Microbiol Lett 220:223–227

    Article  CAS  PubMed  Google Scholar 

  • Keweloh H, Heipieper HJ, Rehm HJ (1989) Protection of bacteria against toxicity of phenol by immobilization in calcium alginate. Appl Microbiol Biotechnol 31:383–389

    Article  CAS  Google Scholar 

  • Methe BA et al (2003) Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science 302:1967–1969

    Article  CAS  PubMed  Google Scholar 

  • Morasch B, Richnow HH, Schink B, Meckenstock RU (2001) Stable hydrogen and carbon isotope fractionation during microbial toluene degradation: Mechanistic and environmental aspects. Appl Environ Microbiol 67:4842–4849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owen WF, Stuckey DC, Healy JB, Young LY, McCarty PL (1979) Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res 13:485–492

    Article  CAS  Google Scholar 

  • Peters F, Rother M, Boll M (2004) Selenocysteine-containing proteins in anaerobic benzoate metabolism of Desulfococcus multivorans. J Bacteriol 186:2156–2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phelps CD, Young LY (2001) Biodegradation of BTEX under anaerobic conditions: a review. Adv Agron 70:329–357

    Google Scholar 

  • Pirt SJ (1965) Maintenance energy of bacteria in growing cultures. Proc R Soc Lond B 163:224–239

    Article  CAS  PubMed  Google Scholar 

  • Ramos JL, Gallegos MT, Marques S, Ramos-Gonzalez MI, Espinosa-Urgel M, Segura A (2001) Responses of Gram-negative bacteria to certain environmental stressors. Curr Opin Microbiol 4:166–171

    Article  CAS  PubMed  Google Scholar 

  • Rekker RF, de Kort HM (1979) The hydrophobic fragmental constant, an extension to a 1000 data point set. J Eur Med Chem 14:479–488

    CAS  Google Scholar 

  • Saito H, Koyasu J, Shigeoka T, Tomita I (1994) Cytotoxicity of chlorophenols to goldfish GFS cells with the MTT and LDH assays. Toxicol In Vitro 8:1107–1112

    Article  CAS  PubMed  Google Scholar 

  • Segura A, Duque E, Mosqueda G, Ramos JL, Junker F (1999) Multiple responses of Gram-negative bacteria to organic solvents. Environ Microbiol 1:191–198

    Article  CAS  PubMed  Google Scholar 

  • Sikkema J, de Bont JA, Poolman B (1994) Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269:8022–8028

    CAS  PubMed  Google Scholar 

  • Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stieb M, Schink B (1989) Anaerobic degradation of isobutyrate by methanogenic enrichment cultures and by a Desulfococcus multivorans strain. Arch Microbiol 151:126–132

    Article  CAS  Google Scholar 

  • Stuckey DC, Owen WF, McCarty PL, Parkin GF (1980) Anaerobic toxicity evaluation by batch and semi-continuous assays. J Water Pollut Control Fed 52:720–729

    CAS  Google Scholar 

  • Tschech A, Fuchs G (1987) Anaerobic degradation of phenol by pure cultures of newly isolated denitrifying pseudomonads. Arch Microbiol 148:213–217

    Article  CAS  PubMed  Google Scholar 

  • Unell M, Kabelitz N, Jansson JK, Heipieper HJ (2007) Adaptation of the psychrotroph Arthrobacter chlorophenolicus A6 to growth temperature and the presence of phenols by changes in the anteiso/iso ratio of branched fatty acids. FEMS Microbiol Lett 266:138–143

    Article  CAS  PubMed  Google Scholar 

  • van Beelen P (2003) A review on the application of microbial toxicity tests for deriving sediment quality guidelines. Chemosphere 53:795–808

    Article  PubMed  CAS  Google Scholar 

  • Vieth A, Kastner M, Schirmer M, Weiss H, Godeke S, Meckenstock RU, Richnow HH (2005) Monitoring in situ biodegradation of benzene and toluene by stable carbon isotope fractionation. Environ Toxicol Chem 24:51–60

    Article  CAS  PubMed  Google Scholar 

  • Wang FQ, Kashket S, Kashket ER (2005) Maintenance of delta pH by a butanol-tolerant mutant of Clostridium beijerinckii. Microbiology 151:607–613

    Article  CAS  PubMed  Google Scholar 

  • Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Contract no. 003998 (GOCE) of the European Commission within its Sixth Framework Program project BIOTOOL. We would like to thank the excellent technical support of Julia Gäbel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann J. Heipieper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duldhardt, I., Nijenhuis, I., Schauer, F. et al. Anaerobically grown Thauera aromatica, Desulfococcus multivorans, Geobacter sulfurreducens are more sensitive towards organic solvents than aerobic bacteria. Appl Microbiol Biotechnol 77, 705–711 (2007). https://doi.org/10.1007/s00253-007-1179-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1179-2

Keywords

Navigation