Skip to main content
Log in

Whole-cell living biosensors—are they ready for environmental application?

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Since the development of the first whole-cell living biosensor or bioreporter about 15 years ago, construction and testing of new genetically modified microorganisms for environmental sensing and reporting has proceeded at an ever increasing rate. One and a half decades appear as a reasonable time span for a new technology to reach the maturity needed for application and commercial success. It seems, however, that the research into cellular biosensors is still mostly in a proof-of-principle or demonstration phase and not close to extensive or commercial use outside of academia. In this review, we consider the motivations for bioreporter developments and discuss the suitability of extant bioreporters for the proposed applications to stimulate complementary research and to help researchers to develop realistic objectives. This includes the identification of some popular misconceptions about the qualities and shortcomings of bioreporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andersen JB, Heydorn A, Hentzer M, Eberl L, Geisenberger O, Christensen BB, Molin S, Givskov M (2001) gfp-Based N-acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl Environ Microbiol 67:575–585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bahl MI, Hestbjerg Hansen L, Rask Licht T, Sorensen SJ (2004) In vivo detection and quantification of tetracycline by use of a whole-cell biosensor in the rat intestine. Antimicrob Agents Chemother 48:1112–1117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6:206–212

    CAS  PubMed  Google Scholar 

  • Bolton EK, Sayler GS, Nivens DE, Rochelle JM, Ripp S, Simpson ML (2002) Integrated CMOS photodetectors and signal processing for very low-level chemical sensing with the bioluminescent bioreporter integrated circuit. Sens Actuators B 85:179–185

    CAS  Google Scholar 

  • Daunert S, Barrett G, Feliciano JS, Shetty RS, Shresta S, Smith-Spencer W (2000) Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100:2705–2738

    CAS  PubMed  Google Scholar 

  • Desbrow C, Routledge EJ, Brighty GC, Sumpter JP, Waldock M (1998) Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening. Environ Sci Technol 32:1549–1558

    CAS  Google Scholar 

  • Deuschle K, Okumoto S, Fehr M, Looger LL, Kozhukh L, Frommer WB (2005) Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Sci 14:2304–2314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dorn JG, Mahal MK, Brusseau ML, Maier RM (2004) Employing a novel fiber optic detection system to monitor the dynamics of in situ lux bioreporter activity in porous media system performance update. Anal Chim Acta 525:63–74

    CAS  Google Scholar 

  • D’Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16:337–353

    PubMed  Google Scholar 

  • Ehlers LJ, Luthy RG (2003) Contaminant bioavailability in soil and sediment. Environ Sci Technol 37:295A–302A

    CAS  PubMed  Google Scholar 

  • Giger W, Berg M, Pham HV, Duong HA, Tran HC, Tao TH, Schertenleib R (2003) Environmental analytical research in Northern Vietnam—a Swiss–Vietnamese cooperation focusing on arsenic and organic contaminants in aquatic environments and drinking water. Chimia 57:529–537

    CAS  Google Scholar 

  • Guerin WF, Boyd SA (1992) Differential bioavailability of soil-sorbed naphthalene to two bacterial species. Appl Environ Microbiol 58:1142–1152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen LH, Sørensen SJ (2001) The use of whole-cell biosensors to detect and quantify compounds or conditions affecting biological systems. Microb Ecol 42:483–494

    CAS  PubMed  Google Scholar 

  • Harms H, Wick LY (2004) Mobilization of organic compounds and iron by microorganisms. In: van Leeuwen HP, Koester W (eds) Physicochemical kinetics and transport at chemical–biological interphases. Wiley, Chichester, pp 401–444

    Google Scholar 

  • Harms H, Rime J, Leupin O, Hug SJ, van der Meer JR (2005) Influence of groundwater composition on arsenic detection by bacterial biosensors. Mikrochim Acta 151:217–222

    CAS  Google Scholar 

  • Heitzer A, Webb OF, Thonnard JE, Sayler GS (1992) Specific and quantitative assessment of naphthalene and salicylate bioavailability by using a bioluminescent catabolic reporter bacterium. Appl Environ Microbiol 58:1839–1846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heitzer A, Malachowsky K, Thonnard JE, Bienkowski PR, White DC, Sayler GS (1994) Optical biosensor for environmental on-line monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic reporter bacterium. Appl Environ Microbiol 60:1487–1494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hermens J, Busser F, Leeuwangh P, Musch A (1985) Quantitative structure activity relationship and mixture toxicity of organic chemicals in Photobacterium phosphoreum—the Microtox test. Ecotoxicol Environ Saf 9:17–25

    CAS  PubMed  Google Scholar 

  • Jaspers MCM, Meier C, Zehnder AJB, Harms H, van der Meer JR (2001) Measuring mass transfer processes of octane with the help of an alkS–alkB∷gfp-tagged Escherichia coli. Environ Microbiol 3:512–524

    Google Scholar 

  • Keane A, Phoenix P, Goshal S, Lau PC (2002) Exposing culprit organic pollutants: a review. J Microbiol Methods 49:103–119

    CAS  PubMed  Google Scholar 

  • King JMH, DiGrazia PM, Applegate B, Burlage R, Sanseverino J, Dunbar P, Larimer F, Sayler GS al (1990) Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science 249:778–781

    CAS  PubMed  Google Scholar 

  • Leupin OX, Hug SJ, Badruzzaman ABM (2005) Arsenic removal from Bangladesh tube well water with filter columns containing zerovalent iron filings and sand. Environ Sci Technol 39:8032–8037

    CAS  PubMed  Google Scholar 

  • Leveau JHJ, Lindow SE (2001) Appetite of an epiphyte: quantitative monitoring of bacterial sugar consumption in the phyllosphere. Proc Natl Acad Sci U S A 98:3446–3453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leveau JHJ, Lindow SE (2002) Bioreporters in microbial ecology. Curr Opin Microbiol 5:259–265

    PubMed  Google Scholar 

  • Looger LL, Dwyer MA, Smith JJ, Hellinga HW (2003) Computational design of receptor and sensor proteins with novel functions. Nature 423:185–189

    CAS  PubMed  Google Scholar 

  • Lyngberg OK, Stemke DJ, Schottel JL, Flickinger MC (1999) A single-use luciferase-based mercury biosensor using Escherichia coli HB101 immobilized in a latex copolymer film. J Ind Microbiol Biotechnol 47:604–609

    Google Scholar 

  • Mische L, Belkin S, Rozen R, Balandreau J (2003) Rice seedling whole exudates and extracted alkylresorcinols induce stress-response in Escherichia coli biosensors. Environ Microbiol 5:403–411

    Google Scholar 

  • Møller S, Sternberg C, Andersen JB, Christensen BB, Ramos JL, Givskov M, Molin S (1998) In situ gene expression in mixed-culture biofilms: evidence of metabolic interactions between community members. Appl Environ Microbiol 64:721–732

    PubMed  PubMed Central  Google Scholar 

  • Norman A, Hansen LH, Sørensen SJ (2005) Construction of a ColD cda promoter-based SOS-green fluorescent protein whole-cell biosensor with higher sensitivity toward genotoxic compounds than constructs based on recA, umuDC, or sul4 promoters. Appl Environ Microbiol 71:2338–2346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega-Calvo JJ, Marchenko AI, Vorobyov AV, Borovick RV (2003) Chemotaxis in polycyclic aromatic hydrocarbon-degrading bacteria isolated from coal-tar- and oil-polluted rhizospheres. FEMS Microbiol Ecol 44:373–381

    CAS  PubMed  Google Scholar 

  • Porta D, Bullerjahn GS, Durham KA, Wilhelm SW, Twiss MR, McKay RML (2003) Physiological characterization of a Synechococcus sp. (Cyanophyceae) strain PCC 7942 iron-dependent bioreporter for freshwater environments. J Phycol 39:64–73

    CAS  Google Scholar 

  • Rajan Premkumar JR, Rosen R, Belkin S, Lev O (2002) Sol–gel luminescence biosensors: encapsulation in recombinant E. coli reporters in thick silicate films. Anal Chim Acta 461:11–23

    Google Scholar 

  • Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92

    CAS  PubMed  Google Scholar 

  • Sanders OI, Rensing C, Kuroda M, Mitra B, Rosen BP (1997) Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J Bacteriol 179:3365–3367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11:286–289

    CAS  PubMed  Google Scholar 

  • Semple KT, Doick KJ, Jones KC, Burauel P, Craven A, Harms H (2004) Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 38:228A–231A

    CAS  PubMed  Google Scholar 

  • Sticher P, Jaspers MCM, Stemmler K, Harms H, Zehnder AJB, van der Meer JR (1997) Development and characterization of a whole-cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples. Appl Environ Microbiol 36:4053–4060

    Google Scholar 

  • Stocker J, Balluch D, Gsell, Harms H, Feliciano JS, Malik KA, Daunert S, van der Meer JR (2003) Development of a set of simple bacterial biosensors for quantitative and rapid field measurements of arsenite and arsenate in potable water. Environ Sci Technol 37:4743–4750

    CAS  PubMed  Google Scholar 

  • Timmis KN, Pieper DH (1999) Bacteria designed for bioremediation. Trends Biotechnol 17:201–204

    CAS  Google Scholar 

  • Toba FA, Hay AG (2005) A simple solid phase assay for the detection of 2,4-D in soil. J Microbiol Methods 62:135–143

    CAS  PubMed  Google Scholar 

  • Trang PTK, Berg M, Viet PH, Mui NV, van der Meer JR (2005) Bacterial bioassay for rapid and accurate analysis of arsenic in highly variable groundwater samples. Environ Sci Technol 39:3625–3630

    Google Scholar 

  • Van der Meer JR, Tropel D, Jaspers M (2004) Illuminating the detection chain of bacterial bioreporters. Environ Microbiol 6:1005–1020

    PubMed  Google Scholar 

  • Van Dyk TK, DeRose EJ, Gonye GE (2001) LuxArray, a high-density, genomewide transcription analysis of Escherichia coli using bioluminescent reporter strains. J Bacteriol 183:5496–5505

    PubMed  PubMed Central  Google Scholar 

  • Vardar G, Babieri P, Wood TK (2005) Chemotaxis of Pseudomonas stutzeri OX1 and Burkholderia cepacia G4 toward chlorinated ethenes. Appl Microbiol Biotechnol 66:696–701

    CAS  PubMed  Google Scholar 

  • Virta M, Lampinen J, Karp M (1995) A luminescence-based mercury biosensor. Anal Chem 67:667–669

    CAS  Google Scholar 

  • Wells M, Gosch M, Rigler R, Harms H, Lasser T, van der Meer JR (2005) Ultrasensitive reporter protein detection in genetically engineered bacteria. Anal Chem 77:2683–2689

    CAS  PubMed  Google Scholar 

  • Werlen C, Jaspers MCM, van der Meer JR (2004) Gas-phase end point measurements of bioavailable naphthalene using a Pseudomonas putida biosensor. Appl Environ Microbiol 70:43–51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wick LY, Colangelo T, Harms H (2001) Kinetics of mass transfer limited bacterial growth on solid PAHs. Environ Sci Technol 35:354–361

    CAS  PubMed  Google Scholar 

  • Willsky GR, Malamy MH (1980) Effect of arsenate on inorganic phosphate transport in Escherichia coli. J Bacteriol 144:356–365

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hauke Harms.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harms, H., Wells, M.C. & van der Meer, J.R. Whole-cell living biosensors—are they ready for environmental application?. Appl Microbiol Biotechnol 70, 273–280 (2006). https://doi.org/10.1007/s00253-006-0319-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0319-4

Keywords

Navigation