Skip to main content

Advertisement

Log in

The cyclopentenone prostaglandin 15-deoxyΔ12,14-prostaglandin J2 attenuates the development of zymosan-induced shock

  • Experimental
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

Multiple-organ failure (MOF) is defined as the progressive deterioration in function which occurs in several organs or systems in patients with septic shock, multiple trauma, severe burns, or pancreatitis. This study investigated the effect of 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2), a PPAR-γ ligand, in a model of zymosan-induced nonseptic shock in mice.

Materials and methods

Mice were randomly assigned to one of four groups (n=10 each) and treated i.p. as follows: group 1, zymosan (500 mg/kg suspended in saline solution) and vehicle (10% DMSO); group 2, zymosan (500 mg/kg suspended in saline solution) plus 15d-PGJ2 (30 µg/kg, suspended in 10% DMSO) 1 h before and 6 h after zymosan administration; group 3, 15d-PGJ2 (30 µg/kg, suspended in 10% DMSO; group 4, vehicle for PGJ2 (10% DMSO) always 1 h before and 6 h after saline administration. After 18 h mice were killed and tissues and biological fluids used for biochemical, immunohistochemical, and histological analysis.

Measurements and results

15d-PGJ2 inhibited the inflammatory response and significantly reduced peritoneal mononuclear cell infiltration and histological injury in mice. A significant protection was demonstrated in kidney, liver, and pancreas injury by the reduction in amylase, lipase, creatinine, AST, ALT, bilirubin, and alkaline phosphatase levels. 15d-PGJ2 also reduced the appearance of nitrotyrosine in the inflamed intestinal tissues. Histological examination revealed a significant reduction in zymosan-induced intestinal damage in 15d-PGJ2 treated mice.

Conclusions

Our findings demonstrate that 15d-PGJ2 exerts potent anti-inflammatory effects on zymosan-induced shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6 a

Similar content being viewed by others

References

  1. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med 29:530–538

    PubMed  Google Scholar 

  2. Brun-Buisson C, Roudot-Thoraval F, Girou E, Grenier-Sennelier C, Durand-Zaleski I (2003) The costs of septic syndromes in the intensive care unit and influence of hospital-acquired sepsis. Intensive Care Med 29:1464–1471

    Article  PubMed  Google Scholar 

  3. Teixeiera TJ, Williams PG, Hellewell PG (1993) Role of prostaglandines and nitric oxide in acute inflammatory reactions in guinea-pig skin. Br J Pharmacol 110:1515–1521

    Google Scholar 

  4. Shayevitz JR, Miller C, Johnson KJ, Rodriguez JL (1995) Multiple organ dysfunction syndrome: end organ and systemic inflammatory response in a mouse model of nonseptic origin. Shock 4:389–396

    Google Scholar 

  5. Schmidt H, Muller-Werdan U, Nuding S, Hoffmann T, Francis DP, Hoyer D, Rauchhaus M, Werdan K (2004) Impaired chemoreflex sensitivity in adult patients with multiple organ dysfunction syndrome-the potential role of disease severity. Intensive Care Med 30:665–672

    Article  PubMed  Google Scholar 

  6. Goris RJA, Boekholtz WK, van Bebber IP, Nuytinck JK, Schillings PH (1986) Multiple organ failure and sepsis without bacteria. Arch Surg 121:897–901

    Google Scholar 

  7. Demling R, Nayac U, Ikegami K, La Londe C (1994) Comparison between lung and liver peroxidation and mortality after zymosan peritonitis in the rats. Shock 2:222–227

    CAS  PubMed  Google Scholar 

  8. Bebber IP van, Boekholz WK, Goris RJ, Schillings PH, Dinges HP, Bahrami S, Redl H, Schlag G (1989) Neutrophil function and lipid peroxidation in a rat model of multiple organ failure. J Surg Res 47:471–475

    Article  PubMed  Google Scholar 

  9. Volman TJ, Hendriks T, Verhofstad AA, Kullberg BJ, Goris RJ (2002) Improved survival of TNF-deficient mice during the zymosan-induced multiple organ dysfunction syndrome. Shock 17:468–472

    Google Scholar 

  10. Cuzzocrea S, Sautebin L, De Sarro G, Costantino G, Rombola L, Mazzon E, Ialenti A, De Sarro A, Ciliberto G, Di Rosa M, Caputi AP, Thiemermann C (1999) Role of interleukin-6 in a non-septic shock model induced by zymosan. Eur Cytokine Netw 10:191–203

    CAS  PubMed  Google Scholar 

  11. Cuzzocrea S, Mazzon E, Di Paola R, Genovese T, Serraino I, Dugo L, Cuzzocrea E, Fulia F, Caputi AP, Salvemini D (2004) Protective effects of M40401, a selective superoxide dismutase mimetic, on zymosan-induced nonseptic shock. Crit Care Med 32:157–167

    Google Scholar 

  12. Evans RM (1998) The steroid and thyroid hormone receptor superfamily. Science 240:889–895

    Google Scholar 

  13. Wetheimer SJ, Myers CL, Wallace RW, Parks TP (1992) Intracellular adhesion molecule-1 gene expression in human endothelial cells. J Biol Chem 267:12030–12035

    PubMed  Google Scholar 

  14. Jiang C, Ting AT, Seed B (1998) PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391:82–86

    Google Scholar 

  15. Cuzzocrea S, Wayman NS, Mazzon E, Dugo L, Di Paola R, Serraino I, Britti D, Chatterjee PK, Caputi AP, Thiemermann C (2002) The cyclopentenone prostaglandin 15-deoxy-delta (12:14)-prostaglandin J (2) attenuates the development of acute and chronic inflammation. Mol Pharmacol 61:997–1007

    Google Scholar 

  16. Cuzzocrea S, Ianaro A, Wayman NS, Mazzon E, Pisano B, Dugo L, Serraino I, Di Paola R, Chatterjee PK, Di Rosa M, Caputi AP, Thiemermann C (2003) The cyclopentenone prostaglandin 15-deoxy-delta (12:14)-PGJ2 attenuates the development of colon injury caused by dinitrobenzene sulphonic acid in the rat. Br J Pharmacol 138:678–688

    Google Scholar 

  17. Chatterjee PK, Patel NS, Cuzzocrea S, Brown PA, Stewart KN, Mota-Filipe H, Britti D, Eberhardt W, Pfeilschifter J, Thiemermann C (2004) The cyclopentenone prostaglandin 15-deoxy-delta (12:14)-prostaglandin J2 ameliorates ischemic acute renal failure. Cardiovasc Res 61:630–643

    Google Scholar 

  18. Cuzzocrea S, Pisano B, Dugo L, Ianaro A, Patel NS, Di Paola R, Genovese T, Chatterjee PK, Di Rosa M, Caputi AP, Thiemermann C (2003) Rosiglitazone and 15-deoxy-delta12:14-prostaglandin J2, ligands of the peroxisome proliferator-activated receptor-gamma (PPAR-gamma), reduce ischaemia/reperfusion injury of the gut. Br J Pharmacol 140:366–376

    Google Scholar 

  19. Cuzzocrea S, Filippelli A, Zingarelli B, Falciani M, Caputi AP, Rossi F (1997) Role of nitric oxide in a non-septic shock model induced by zymosan in the rat. Shock 7:351–357

    Google Scholar 

  20. Youssef J, Badr M (2001) Peroxisome proliferator-activated receptors. From orphanage to fame in decade. Saudi Pharm J 9:1–13

    Google Scholar 

  21. Chinetti G, Fruchart JC, Staels B (2000) Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res 49:497–505

    Google Scholar 

  22. Li AC, Brown KK, Silvestre MJ, Willson TM, Palinski W, Glass CK (2000) Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 106:523–531

    Google Scholar 

  23. Ando M, Murakami Y, Kojima F, Endo H, Kitasato H, Hashimoto A, Kobayashi H, Majima M, Inoue M, Kondo H, Kawai S, Hayashi I (2003) Retrovirally introduced prostaglandin D2 synthase suppresses lung injury induced by bleomycin. Am J Respir Cell Mol Biol 28:582–591

    Google Scholar 

  24. Vamecq J, Latruffe N (1999) Medical significance of peroxisome proliferator-activated receptors. Lancet 354:141–148

    Google Scholar 

  25. Kadowaki T (2000) Insights into insulin resistance and type 2 diabetes from knockout mouse models. J Clin Invest 106:1305–1307

    Google Scholar 

  26. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPARγ). J Biol Chem 270:12953–12956

    Article  CAS  PubMed  Google Scholar 

  27. Willson TM, Cobb JE, Cowan DJ (1996) The structure-activity relationship between peroxisome proliferator-activated receptor gamma agonism and the antihyperglycemic activity of thiazolidinediones. J Med Chem 39:665–668

    Google Scholar 

  28. Straus DS, Glass CK (2001) Cyclopentenone prostaglandins: new insights on biological activities and cellular targets. Med Res Rev 21:185–210

    Google Scholar 

  29. Zingarelli B, Sheehan M, Hake PW, O’Connor M, Denenberg A, Cook JA (2003) Peroxisome proliferator activator receptor-gamma ligands, 15-deoxy-delta (12:14)-prostaglandin J2 and ciglitazone, reduce systemic inflammation in polymicrobial sepsis by modulation of signal transduction pathways. J Immunol 171:6827–6837

    Google Scholar 

  30. Drew PD, Chavis JA (2001) The cyclopentone prostaglandin 15-deoxy-delta (12:14) prostaglandin J2 represses nitric oxide, TNF-alpha, and IL-12 production by microglial cells. J Neuroimmunol 115:28–35

    Google Scholar 

  31. Pasceri V, Wu HD, Willerson JT, Yeh ET (2000) Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-gamma activators. Circulation 101:235–238

    Google Scholar 

  32. Tsubouchi Y, Kawahito Y, Kohno M, Inoue K, Hla T, Sano H (2001) Feedback control of the arachidonate cascade in rheumatoid synoviocytes by 15-deoxy-delta (12:14)-prostaglandin J2. Biochem Biophys Res Commun 283:750–755

    Google Scholar 

  33. Colville-Nash PR, Qureshi SS, Willis D, Willoughby DA (1998) Inhibition of inducible nitric oxide synthase by peroxisome proliferator-activated receptor agonists: correlation with induction of heme oxygenase 1. J Immunol 161:978–984

    Google Scholar 

  34. Collin M, Patel NS, Dugo L, Thiemermann C (2004) Role of peroxisome proliferator-activated receptor-gamma in the protection afforded by 15-deoxydelta12:14 prostaglandin J2 against the multiple organ failure caused by endotoxin. Crit Care Med 32:826–831

    Google Scholar 

  35. Salvemini D, Mazzon E, Dugo L, Riley DP, Serraino I, Caputi AP, Cuzzocrea S (2001) Pharmacological manipulation of the inflammatory cascade by superoxide dismutase mimetic, M40403. Br J Pharmacol 132:815–827

    Google Scholar 

  36. Marx N, Sukhova G, Murphy C, Libby P, Plutzky J (1998) Macrophages in human atheroma contain PPAR-γ-differentiation-dependent peroxisomal proliferator-activated receptor-γ (PPAR-γ) expression and reduction of MMP-9 activity through PPAR-γ activation in mononuclear phagocytes in vitro. Am J Pathol 153:17–23

    Google Scholar 

  37. Cuzzocrea S, Mazzon E, Dugo L, Barbera A, Centorrino T, Ciccolo A, Fonti MT, Caputi AP (2001) Inducible nitric oxide synthase knockout mice exhibit resistance to the multiple organ failure induced by zymosan. Shock 16:51–58

    CAS  Google Scholar 

  38. Volman TJ, Goris RJ, van der Jagt M, van de Loo FA, Hendriks T (2002) Organ damage in zymosan-induced multiple organ dysfunction syndrome in mice is not mediated by inducible nitric oxide synthase. Crit Care Med 30:1553–1559

    Article  CAS  PubMed  Google Scholar 

  39. Beckman JS (1996) Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol 9:836–844

    Article  PubMed  Google Scholar 

  40. Eiserich JP, Hristova M, Cross CE, Jones AD, Freeman BA, Halliwell B, Van der Vliet A (1998) Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 391:393–397

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Cuzzocrea.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marzocco, S., Di Paola, R., Mazzon, E. et al. The cyclopentenone prostaglandin 15-deoxyΔ12,14-prostaglandin J2 attenuates the development of zymosan-induced shock. Intensive Care Med 31, 693–700 (2005). https://doi.org/10.1007/s00134-005-2596-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-005-2596-2

Keywords

Navigation