Skip to main content

Scenarios and Models for the Design of a Sustainable Bioeconomy

  • Chapter
  • First Online:
The bioeconomy system

Abstract

Scenarios and models are frequently used tools to describe the various elements of the bioeconomy system and possible developments in the future and to analyse them in terms of their impact on society, the economy and the environment. Scenarios offer a methodological approach to the participatory development of future images, both qualitatively in the form of narratives and quantitatively in the form of numerical data. Within this framework, models play a central role in the quantitative description of scenarios. They can represent individual elements of the bioeconomy (e.g. economy, land use, environment), but also the complex interactions between these elements. Examples of the current application of scenarios and models to questions of shaping a sustainable bioeconomy are presented, and requirements for the further development and refinement of these tools are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For more information see 7 https://www.thuenen.de/de/institutsuebergreifende-projekte/szenarien-einer-biooekonomie-2050-potenziale-zielkonflikte-loesungsstrategien/

  2. 2.

    For more information see 7 https://www.isi.fraunhofer.de/content/dam/isi/dokumente/ccv/2018/Zukunftsbilder_BioKompass_Langfassung.pdf

References

  • Aguiar, A., Narayanan, B., & McDougall, R. (2016). An overview of the GTAP 9 data base. Journal of Global Economic Analysis, 1(1), 181–208.

    Article  Google Scholar 

  • Alcamo, J. (2008). Chapter six the SAS approach: Combining qualitative and quantitative knowledge in environmental scenarios. Developments in Integrated Environmental Assessment, 2, 123–150.

    Article  Google Scholar 

  • Alkemade, R., Van Oorschot, M., Miles, L., Nellemann, C., Bakkenes, M., & ten Brink, B. (2009). GLOBIO3: A framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystems. https://doi.org/10.1007/s10021-009-9229-5

  • An, L. (2012). Modeling human decisions in coupled human and natural systems: Review of agent-based models. Ecological Modelling, 229, 25–36.

    Article  Google Scholar 

  • Anderson, T. R., Hawkins, E., & Jones, P. D. (2016). CO2, the greenhouse effect and global warming: From the pioneering work of Arrhenius and Callendar to today’s earth system models. Endeavour. https://doi.org/10.1016/j.endeavour.2016.07.002

  • Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, D., van Griensven, A., van Liew, M. W., Kannan, N., & Jha, M. K. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491–1508.

    Article  Google Scholar 

  • Banse, M., Zander, K., Babayan, T., Bringezu, S., Dammer, L., Egenolf, V., Göpel, J., Haufe, H., Hempel, C., Hüfner, R., Millinger, M., Morland, C., Musonda, F., Partanen, A., Piotrowski, S., Schaldach, R., Schier, F., Schüngel, J., Sturm, N., Thrän, D., Weimar, H., Wilde, A., Will, S. (2020). Eine Biobasierte Zukunft in Deutschland - Szenarien und Gesellschaftliche Herausforderungen. Johann Heinrich von Thünen-Institut, Braunschweig. https://www.thuenen.de/media/institute/ma/Downloads/BEPASO-Broschuere.pdf. Accessed 01 Sept 2019.

  • Bchir, H., Decreux, Y., Guérin, J. L., & Jean, S. (2002). MIRAGE, a computable general equilibrium model for trade policy analysis. CEPII. https://www.gtap.agecon.purdue.edu/resources/download/1256.pdf. Accessed 01 Sept 2019.

  • Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Lotze-Campen, H., Müller, C., Reichstein, M., & Smith, B. (2007). Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biology, 13(3), 679–706.

    Article  Google Scholar 

  • Bossel, H. (1994). Modellbildung und Simulation: Konzepte, Verfahren und Modelle zum Verhalten dynamischer Systeme; ein Lehr-und Arbeitsbuch. Vieweg.

    Book  Google Scholar 

  • Bringezu, S., Distelkamp, M., Lutz, C., Wimmer, F., Schaldach, R., Hennenberg, K. J., Böttcher, H., & Egenolf, V. (2021). Environmental and socioeconomic footprints of the German bioeconomy. Nature Sustainability, 1-9. https://doi.org/10.1038/s41893-021-00725-3

  • Egenolf, V., & Bringezu, S. (2019). Conceptualization of an indicator system for assessing the sustainability of the bioeconomy. Sustainability, 11(2), 443.

    Article  Google Scholar 

  • Eggleston, S., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K. (2006). Intergovernmental panel on climate change guidelines for national greenhouse gas inventories, intergovernmental panel on climate change. IPCC Secretariat.

    Google Scholar 

  • Hamilton, S. H., ElSawah, S., Guillaume, J. H. A., Jakeman, A. J., & Pierce, S. A. (2015). Integrated assessment and modelling: Overview and synthesis of salient dimensions. Environmental Modelling and Software. https://doi.org/10.1016/j.envsoft.2014.12.005

  • Havlík, P., Schneider, U. A., Schmid, E., Böttcher, H., Fritz, S., Skalský, R., Aoki, K., De Cara, S., Kindermann, G., Kraxner, F., Leduc, S., McCallum, I., Mosnier, A., Sauer, T., & Obersteiner, M. (2011). Global land-use implications of first and second generation biofuel targets. Energy Policy. https://doi.org/10.1016/j.enpol.2010.03.030 .

  • Hudson, L. N., Newbold, T., Contu, S., Hill, S. L. L., Lysenko, I., De Palma, A., … Purvis, A. (2014). The PREDICTS database: A global database of how local terrestrial biodiversity responds to human impacts. Ecology and Evolution, 4(24), 4701–4735.

    Article  Google Scholar 

  • Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., … Marshall, S. (2013). The community earth system model: A framework for collaborative research. Bulletin of the American Meteorological Society, 94(9), 1339–1360.

    Article  Google Scholar 

  • Jordan, M., Lenz, V., Millinger, M., Oehmichen, K., & Thrän, D. (2019). Future competitive bioenergy technologies in the German heat sector: Findings from an economic optimization approach. Energy, 189, art. 116194. https://doi.org/10.1016/j.energy.2019.116194

    Article  Google Scholar 

  • Kosow, H., & Gaßner, R. (2008). Methods of future and scenario analysis: Overview, assessment, and selection criteria. DIE Studies 39. Bonn: Deutsches Institut für Entwicklungspolitik. https://www.ssoar.info/ssoar/handle/document/19366 . Accessed 01 Sept 2019.

  • Laborde, D., & Valin, H. (2012). Modeling land-use changes in a global CGE: Assessing the EU biofuel mandates with the MIRAGE-BioF model. Climate Change Economics, 3(03), 1250017.

    Article  Google Scholar 

  • Lapola, D. M., Schaldach, R., Alcamo, J., Bondeau, A., Koch, J., Koelking, C., & Priess, J. A. (2010). Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proceedings of the National Academy of Sciences, 107(8), 3388–3393.

    Article  CAS  Google Scholar 

  • Lotze-Campen, H., Müller, C., Bondeau, A., Rost, S., Popp, A., & Lucht, W. (2008). Global food demand, productivity growth, and the scarcity of land and water resources: A spatially explicit mathematical programming approach. Agricultural Economics, 39(3), 325–338.

    Google Scholar 

  • Mathijs, E., Brunori, G., Carus, M., Griffon, M., Last, L., Gill, M., Koljonen, M., Lehoczky, OI, & Potthast, A. (2015). Sustainable agriculture, forerstry and fisheries in the bioeconomy – A challenge for Europe. Standing Committee on Agricultural Research 4th Foresight Exercise.

    Google Scholar 

  • Matthews, R. B., Gilbert, N. G., Roach, A., Polhill, J. G., & Gotts, N. M. (2007). Agent-based land-use models: A review of applications. Landscape Ecology, 22(10), 1447–1459.

    Article  Google Scholar 

  • McGuffie, K., & Henderson-Sellers, A. (2005). A climate modelling primer. Wiley.

    Book  Google Scholar 

  • Mekonnen, M., & Hoekstra, A. Y. (2011). National water footprint accounts: The green, blue and grey water footprint of production and consumption. Value of water research report No. 50. Delft: Unesco-IHE Institute for Water Education. https://ris.utwente.nl/ws/portalfiles/portal/5146137/Report50-NationalWaterFootprints-Vol1.pdf . Accessed 1 Sept.2019.

  • Miller, S. A., Landis, A. E., Theis, T. L., & Reich, R. A. (2007). A comparative life cycle assessment of petroleum and soybean-based lubricants. Environmental Science and Technology, 41(11), 4143–4149.

    Article  CAS  Google Scholar 

  • Newbold, T., Hudson, L. N., Hill, S. L., Contu, S., Lysenko, I., Senior, R. A., … Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520(7545), 45–50.

    Article  CAS  Google Scholar 

  • Nilsson, M., & Costanza, R. (2015). Overall framework for the sustainable development goals. In A.-S. Stevance (Ed.), Review of targets for the sustainable development goals: The science perspective (pp. 7–12). International Council for Science (ICSU), International Social Science Council (ISSC).

    Google Scholar 

  • O’Brien, M., Schütz, H., & Bringezu, S. (2015). The land footprint of the EU bioeconomy: Monitoring tools. Gaps and needs. Land Use Policy, 47, 235–246.

    Article  Google Scholar 

  • O’Brien, M., Wechsler, D., Bringezu, S., & Schaldach, R. (2017). Toward a systemic monitoring of the European bioeconomy: Gaps, needs and the integration of sustainability indicators and targets for global land use. Land Use Policy, 66, 162–171.

    Article  Google Scholar 

  • Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C., Arneth, A., … Jones, J. W. (2014). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences, 111(9), 3268–3273.

    Article  CAS  Google Scholar 

  • Rotmans, J., & van Asselt, M. B. A. (2001). Uncertainty management in integrated assessment modeling: Towards a pluralistic approach. Environmental Monitoring and Assessment, 69(2), 101–130.

    Article  CAS  Google Scholar 

  • Schaldach, R., & Priess, J. A. (2008). Integrated models of the land system: A review of modelling approaches on the regional to global scale. Living Reviews in Landscape Research, 1, 1.

    Google Scholar 

  • Schaldach, R., Alcamo, J., Koch, J., Kölking, C., Lapola, D. M., Schüngel, J., & Priess, J. A. (2011). An integrated approach to modelling land-use change on continental and global scales. Environmental Modelling and Software, 26(8), 1041–1051.

    Article  Google Scholar 

  • Stanton, E. A., Ackerman, F., & Kartha, S. (2009). Inside the integrated assessment models: Four issues in climate economics. Climate and Development, 1(2), 166–184.

    Article  Google Scholar 

  • Stehfest, E., van Vuuren, D., Kram, T., & Bouwman, L. (Eds.). (2014). Integrated assessment of global environmental change with IMAGE 3.0: Model description and policy applications. PBL Netherlands Environmental Assessment Agency.

    Google Scholar 

  • Thrän, D., Arendt, O., Banse, M., Braun, J., Fritsche, U., Gärtner, S., Hennenberg, K. J., Hünneke, K., Millinger, M., Ponitka, J., Rettenmaier, N., Schaldach, R., Schüngel, J., Wern, B., & Wolf, V. (2017). Strategy elements for a sustainable bioenergy policy based on scenarios and systems modeling: Germany as example. Chemical Engineering and Technology, 40(2), 211–226.

    Article  Google Scholar 

  • Tukker, A., Bulavskaya, T., Giljum, S., de Koning, A., Lutter, S., Simas, M., Stadler, K., & Wood, R. (2016). Environmental and resource footprints in a global context: Europe’s structural deficit in resource endowments. Global Environmental Change, 40, 171–181.

    Article  Google Scholar 

  • Uusitalo, L., Lehikoinen, A., Helle, I., & Myrberg, K. (2015). An overview of methods to evaluate uncertainty of deterministic models in decision support. Environmental Modelling and Software, 63, 24–31.

    Article  Google Scholar 

  • Woltjer, G. B., & Kuiper, M. H. (2014). The MAGNET model: Module description (S. 14–057). Wageningen: LEI Wageningen University & Research Centre, LEI Report.

    Google Scholar 

  • van Asselen, S., & Verburg, P. H. (2013). Land cover change or land-use intensification: Simulating land system change with a global-scale land change model. Global Change Biology, 19(12), 3648–3667.

    Article  Google Scholar 

  • Zah, R., Faist, M., Reinhard, J., & Birchmeier, D. (2009). Standardized and simplified life-cycle assessment (LCA) as a driver for more sustainable biofuels. Journal of Cleaner Production, 17(1), 102–105.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Schaldach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schaldach, R., Thrän, D. (2022). Scenarios and Models for the Design of a Sustainable Bioeconomy. In: Thrän, D., Moesenfechtel, U. (eds) The bioeconomy system. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64415-7_19

Download citation

Publish with us

Policies and ethics