Skip to main content

In Situ Characterization of Extracellular Polymeric Substances (EPS) in Biofilm Systems

  • Chapter
Microbial Extracellular Polymeric Substances

Abstract

Historically, microbial polysaccharides were studied for three reasons. First, polysaccharides represent a structural feature of the microbial cell; therefore they were investigated for pure and basic research interests. Second, polysaccharides were recognized as antigen determinants of the microbial cell surface; the knowledge of their structure was and still is of great importance in medical microbiology. Third, microbial polysaccharides were recognized as a source of polymers with unique properties. These applied aspects of polysaccharides were a reason to study their structure, properties, and production on the pilot and industrial scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agard DA (1984) Optical sectioning microscopy: cellular architecture in three dimensions. Annu Rev Biophys Bioeng 13: 191–219

    CAS  Google Scholar 

  • Allison DG, Sutherland IW (1984) A staining technique for attached bacteria and its correlation to extracellular carbohydrate production. J Microbiol Meth 2: 93–99

    CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143–169

    CAS  Google Scholar 

  • An YH, Friedman RJ, Draughn RA, Smith EA, Nicholson JH, John JF (1995) Rapid quantification of staphylococci adhered to titanium surfaces using image analyzed epifluorescence microscopy. J Microbiol Meth 24: 29–40

    Google Scholar 

  • Aspinall GO (1982) Isolation and fractionation of polysaccharides. In: Aspinall GO (ed) The polysaccharides, vol I. Academic Press, New York, pp 19–34

    Google Scholar 

  • Assmus B, Schloter M, Kirchhof G, Hutzler P, Hartmann A (1997) Improved in situ tracking of rhizosphere bacteria using dual staining with fluorescence-labeled antibodies and rRNAtargeted oligonucleotides. Microb Ecol 33: 32–40

    Google Scholar 

  • Axelrod A, Koppel DE, Schlessinger J, Elsen E, Webb WW (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16: 1055–1069

    CAS  Google Scholar 

  • Beech IB (1996) The potential use of atomic force microscopy for studying corrosion of metals in the presence of bacterial films-an overview. Int Biodeter Biodegr 37: 141–149

    CAS  Google Scholar 

  • Birmingham JJ, Hughes NP, Treloar R (1995) Diffusion and binding measurements within oral biofilms using fluorescence photobleaching recovery methods. Phi Trans Soc Lond B Biol Sci 350: 325–343

    CAS  Google Scholar 

  • Bloem J, Veninga M, Sheperd J (1995) Fully automatic determination of soil bacterium numbers, cell volumes, and frequencies of dividing cells by confocal laser scanning microscopy and image analysis. Appl Environ Microbiol 61: 926–936

    CAS  Google Scholar 

  • Blonk JCG, Don A, van Aalst H, Birmingham JJ (1993) Fluorescence photobleaching recovery in the confocal scanning laser microscope. J Microsc 169: 363–374

    CAS  Google Scholar 

  • Bremer PJ, Geesey GG (1991a) An evaluation of biofilm development utilizing non-destructive attenuated total reflectance Fourier transform infrared spectroscopy. Biofouling 3: 89–100

    CAS  Google Scholar 

  • Bremer PJ, Geesey GG (1991b) Laboratory based model of microbiologically induced corrosion of copper. Appl Environ Microbiol 57: 1956–1962

    CAS  Google Scholar 

  • Bremer PJ, Geesey GG, Drake B (1992) Atomic force microscopy examination of the topo- graphy of a hydrated bacterial biofilm on a copper surface. Curr Microbiol 24: 223–230

    CAS  Google Scholar 

  • Buswell CM, Herlihy YM, Lawrence LM, McGuiggan JTM, Marsh PD, Keevil CW, Leach SA (1998) Extended survival and persistence of Campylobacter spp. in water and aquatic bio-films and their detection by immunofluorescence-antibody and -rRNA staining. Appl Environ Microbiol 64: 733–741

    CAS  Google Scholar 

  • Caldwell DE, Korber DR, Lawrence JR (1992a) Confocal laser microscopy and digital image analysis in microbial ecology. Adv Microbial Ecol 12: 1–67

    CAS  Google Scholar 

  • Caldwell DE, Korber DR, Lawrence JR (1992b) Imaging of bacterial cells by fluorescence exclusion using scanning confocal laser microscopy. J Microb Meth 15: 249–261

    Google Scholar 

  • Caldwell DE, Wolfaardt GM, Korber DR, Lawrence JR (1996) Cultivation of microbial consortia and communities. In: Hurst CJ, Knudson GR, McInerney MJ, Stetzenbach LD, Walker MV (eds) Manual for environmental microbiology. American Society for Microbiology, pp 79–90

    Google Scholar 

  • Caldwell DE, Wolfaardt GM, Korber DR, Lawrence JR (1997a) Do bacterial communities transcend Darwinism? Adv Microb Ecol 15: 105–191

    Google Scholar 

  • Caldwell DE, Atuku E, Wilkie DC, Wivcharuk KP, Karthikeyan S, Korber DR, Schmid DF, Wolfaardt GM (1997b) Germ theory versus community theory in understanding and controlling the proliferation of biofilms. Adv Dent Res 11: 4–13

    CAS  Google Scholar 

  • Chenu C, Jaunet AM (1992) Cryoscanning electron microscopy of microbial extracellular polysaccharides and their association with minerals. Scanning 14: 360–364

    Google Scholar 

  • Chróst RJ (1991) Microbial enzymes in aquatic environments. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Clark DS (1990) Noninvasive techniques in studies of immobilized cells. In: Bont JAM de, Visser J, Mattiasson B, Tramper J (eds) Physiology of immobilized cells. Elsevier, Amsterdam, pp 603–613

    Google Scholar 

  • Cooksey KE, Cooksey B (1986) Adhesion of fouling diatoms to surfaces: some biochemistry. In: Evans LV, Hoagland KD (eds) Algal fouling. Elsevier, Amsterdam, pp 41–53

    Google Scholar 

  • Costerton JW, Nickel JC, Ladd TI (1986) Suitable methods for the comparative study of free-living and surface-associated bacterial populations. In: Pointdexter JS, Leadbetter ER (eds) Bacteria in nature. Plenum Press, New York, p 49–84

    Google Scholar 

  • Costerton JW, Lewandowski Z, De Beer D, Caldwell D, Korber D, James G (1994) Biofilms, the customized microniche. J Bacteriol 176: 2137–2142

    CAS  Google Scholar 

  • Danilatos GD (1991) Review and outline of environmental SEM at present. J Microsc 162: 391 -X402

    Google Scholar 

  • Dazzo FB, Wright SF (1996) Production of anti-microbial antibodies and their use in immunofluorescence microscopy. In. Akkermans ADL, van Elsas JD, de Bruijn FJ (eds) Molecular microbial ecology manual. Kluwer, Dordrecht, 4.1. 2: pp 1–27

    Google Scholar 

  • De Beer D, Stoodley P, Lewandowski Z (1997) Measurement of local diffusion coefficients in biofilms by microinjection and confocal microscopy. Biotechnol Bioeng 53: 151–158

    Google Scholar 

  • DeLong EF, Wickham GS, Pace NR (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243: 1360–1363

    CAS  Google Scholar 

  • Drake B, Prater CB, Weisenhorn AL, Gould SAC, Albrecht TR, Quate CF, Connell DS, Hansma HG, Hansma PK (1989) Imaging crystals, polymers and processes in water with the atomic force microscope. Science 241: 1586–1589

    Google Scholar 

  • Dubuisson MP, Jain AK, Jain MK (1994) Segmentation and classification of bacterial culture images. J Microbiol Meth 19: 279–295

    Google Scholar 

  • Erdos GW (1986) Localization of carbohydrate-containing molecules. In: Aldrich HC, Todd WJ (eds) Ultrastructure techniques for microorganisms. Plenum Press, New York, pp 399–420

    Google Scholar 

  • Faude UC, Höfle MG (1997) Development and application of monoclonal antibodies for in situ detection of indigenous bacterial strains in aquatic systems. Appl Environ Microbiol 63: 4534–4542

    CAS  Google Scholar 

  • Geesey GG, Jang L (1989) Interactions between metal ions and capsular polymers. In: Beveridge TJ, Doyle RJ (eds) Metal ions and bacteria. Wiley, New York, pp 325–357

    Google Scholar 

  • Geesey GG, Iwaoka T, Griffith PR (1987) Characterization of interfacial phenomena occurring during exposure of a thin copper film to an aqueous suspension of an acidic polysaccharide. J Coll Interface Sci 120: 370–376

    Google Scholar 

  • Geesey GG, Jang L, Jolley JG, Hankins MR, Iwaoka T, Griffith PR (1988) Binding of metal ions by extracellular polymers of biofilm bacteria. Wat Sci Technol 20: 161–165

    CAS  Google Scholar 

  • Gilbert B, Assmuss B, Hartmann A, Frenzel P (1998) In situ localization of two methanotro-phic strains in the rhizosphere of rice plants. FEMS Microbiol Ecol 25: 117–128

    CAS  Google Scholar 

  • Gonzalez RC, Wintz P (1977) Digital image processing. Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • Gorby GL (1994) Digital confocal microscopy allows measurements and three-dimensional multiple spectral reconstructions of Neisseria gonorrhoe/epithelial cell interactions in the human fallopian tube organ culture model. J Histochem Cytochem 42: 297–306

    CAS  Google Scholar 

  • Hansen M, Kragelund L, Nybroe O, Sörensen J (1997) Early colonization of barley roots by Pseudomonas fluorescens studied by immunofluorescence technique and confocal laser scanning microscopy. FEMS Microbiol Ecol 23: 353–360

    CAS  Google Scholar 

  • Hansma PK, Drake B, Mari O, Gould SAC, Prater CB (1989a) The scanning ion conductance microscope. Science 243: 641–643

    CAS  Google Scholar 

  • Hansma PK, Elinga VB, Mari O, Bracker CE (1989b) Scanning tunneling microscopy and at- omic force microscopy: application to biology and technology. Science 241: 209–216

    Google Scholar 

  • Haugland RP (1996) Handbook of fluorescent probes and research chemicals. Molecular Probes, Eugene, Oregon

    Google Scholar 

  • Holloway CF, Cowen JP (1997) Development of a scanning confocal laser microscopic technique to examine the structure and composition of marine snow. Limnol Oceanogr 42: 1340–1352

    CAS  Google Scholar 

  • Hood MA, Schmidt JM (1996) The examination of Seliberia stellata exopolymer using lectin assays. Microb Ecol 31: 281–290

    CAS  Google Scholar 

  • Jahn A, Nielsen PH (1995) Extraction of extracellular polymeric substances (EPS) from biofilms using a cationic exchange resin. Wat Sci Technol 32: 157–164

    CAS  Google Scholar 

  • Jolley JG, Geesey GG, Hankins MR, Wright RB, Wichlacz PL (1989) In situ, real-time FTIR/CIR/ATR study of the biocorrosion of copper by gum arabic, alginic acid, bacterial culture supernatant and Pseudomonas atlantica exopolymer. Appl Spect 43: 1062–1067

    CAS  Google Scholar 

  • Jones AH, Lee C-C, Monda BJ, Robinovitch MR, Birdsell DC (1986) Surface localization of sialic acid on Actinomyces viscosus. J Gen Microbiol 132: 3381–3391

    CAS  Google Scholar 

  • Korber DR, Caldwell DE, Costerton JW (1994) Structural analysis of native and pure-culture biofilms using scanning confocal laser microscopy. Proceedings of the National Association of Corrosion Engineers (NACE) Canadian Region Western Conference, Calgary, Ab, pp 347–353

    Google Scholar 

  • Kühl M, Lassen C, Revsbech N-P (1997) A simple light meter for measurements of PAR (400 to 700 nm) with fiber-optic microprobes: application for P vs E0 ( PAR) measurements in a microbial mat. Aquat Microb Ecol 13: 197–207

    Google Scholar 

  • Lamont HC, Silvester WB, Torrey JG (1987) Nile red fluorescence demonstrates lipid in the envelope of vesicles from N2-fixing cultures of Frankia. Can J Microbiol 34: 656–660

    Google Scholar 

  • Lassen C, Ploug H, Jorgensen BB (1992) A fibre optic scalar irradiance microsensor: applica-tion for spectral light measurements in sediments. FEMS Microbiol Ecol 86: 247–254

    Google Scholar 

  • Laurent M, Johannin G, Gilbert N, Lucas L, Cassio D, Petit PX, Fleury A (1994) Power and li-mits of laser scanning confocal microscopy. Biological Cell 80: 229–240

    CAS  Google Scholar 

  • Lavoie DM, Little BJ, Ray RI, Bennett RH, Lambert MW, Asper V, Baerwald RJ (1995) Environ- mental scanning electron microscopy of marine aggregates. J Microsc 178: 101–106

    Google Scholar 

  • Lawrence JR, Korber DR, Caldwell DE (1989) Computer-enhanced darkfield microscopy for the quantitative analysis of bacterial growth and behavior on surfaces. J Microbiol Meth 10: 123–138

    Google Scholar 

  • Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE (1991) Optical sectioning of microbial biofilms. J Bact 173: 6558–6567

    CAS  Google Scholar 

  • Lawrence JR, Wolfaardt GM, Korber DR (1994) Monitoring diffusion in biofilm matrices using confocal laser microscopy. Appl Environ Microbiol 60: 1166–1173

    CAS  Google Scholar 

  • Lawrence JR, Korber DR, Wolfaardt GM, Caldwell DE (1996) Analytical imaging and microscopy techniques In: Hurst CJ, Knudson GR, McInerney MJ, Stetzenbach LD, Walker MV (eds) Manual of environmental microbiology. American Society for Microbiology Press, Washington, DC, pp 29–51

    Google Scholar 

  • Lawrence JR, Kwong YTJ, Swerhone GDW (1997) Colonization and weathering of natural sulfide mineral assemblages by Thiobacillus ferrooxidans. Can J Microbiol 43: 69–78

    Google Scholar 

  • Lawrence JR, Wolfaardt GM, Neu TR (1998a) The study of biofilms using confocal laser scanning microscopy. In: Wilkinson MHF, Schut F (eds) Digital analysis of microbes. Imaging, morphometry, fluorometry and motility techniques and applications. Modern microbiological methods series. Wiley, Sussex, pp 431–465

    Google Scholar 

  • Lawrence JR, Neu TR, Swerhone GDW (1998b) Application of multiple parameter imaging for the quantification of algal, bacterial and exopolymer components of microbial biofilms. J Microbiol Meth 32: 253–261

    CAS  Google Scholar 

  • Leppard GG (1986) The fibrillar matrix component of lacustrine biofilms. Wat Res 20: 697–702

    Google Scholar 

  • Leppard GG, Heissenberger A, Herndl GJ (1996) Ultrastructure of marine snow I. Transmission electron microscopy methodology. Mar Ecol Prog Ser 135: 289–298

    Google Scholar 

  • Lewandowski Z, Altobelli SA, Majors PD, Fukushima E (1992) NMR imaging of hydrodynamics near microbially colonized surfaces. Water Sci Technol 26: 577–584

    CAS  Google Scholar 

  • Lewandowski Z, Altobelli SA, Fukushima E (1993) NMR and microelectrode studies of hydrodynamics and kinetics in biofilms. Biotechnol Prog 9: 40–45

    CAS  Google Scholar 

  • Lewandowski Z, Stoodley P, Altobelli S (1995) Experimental and conceptual studies on mass transport in biofilms. Wat Sci Technol 31: 153–162

    Google Scholar 

  • Lindberg B, Lönngren J, Svensson S (1975) Specific degradation of polysaccharides. Adv Carbohydr Chem Biochem 31: 185–240

    CAS  Google Scholar 

  • Lohmeier-Vogel EM, McIntyre DD, Vogel HJ (1990) Nuclear magnetic resonance spectroscopy as an analytical tool in biotechnology. In: Bont JAM de, Visser J, Mattiasson B, Tramper J (eds) Physiology of immobilized cells. Elsevier, Amsterdam, pp 661–676

    Google Scholar 

  • Lubbers DW (1992) Fluorescence based chemical sensors. Adv Biosensors 2: 215–260

    Google Scholar 

  • Marie D, Vaulot D, Partensky F (1996) Application of the novel nucleic acid dyes YOYO-1, YO-PRO-1, and PicoGreen for flow cytometric analysis of marine procaryotes. Appl Environ Microbiol 62:1649–1655

    CAS  Google Scholar 

  • Martin Y, Williams CC, Wickramasinghe HK (1988) Tip techniques for microcharacterization of materials. Scanning Microsc 2: 3–8

    Google Scholar 

  • Massol-Deya AA, Whallon J, Hickey RF, Tiedje JM (1995) Channel structures in aerobic bio-films of fixed-film reactors treating contaminated groundwater. Appl Environ Microbiol 61: 769–777

    CAS  Google Scholar 

  • Merker RI, Smit J (1988) Characterization of the adhesive holdfast of marine and freshwater caulobacters. Appl Environ Microbiol 54: 2078–2085

    CAS  Google Scholar 

  • Michael T, Smith CM (1995) Lectins probe molecular films in biofouling: characterization of early films on non-living and living surfaces. Mar Ecol Prog Ser 119: 229–236

    CAS  Google Scholar 

  • Möller S, Kristensen CS, Poulsen LK, Carstensen JM, Molin S (1995) Bacterial growth on surfaces: automated image analysis for quantification of growth rate-related parameters. Appl Environ Microbiol 61: 741–748

    Google Scholar 

  • Morgan P, Cooper CJ, Battersby NS, Lee SA, Lewis ST, Machin TM, Graham SC, Watkinson RJ (1991) Automated image analysis method to determine fungal biomass in soils and on solid matrices. Soil Biol Biochem 23: 609–616

    Google Scholar 

  • Morioka H, Tachibana M, Suganuma A (1987) Ultrastructural localization of carbohydrates on thin sections of Stahpylococcus aureus with silver methenamine and wheat germ agglutinin-gold complex. J Bacteriol 169: 1358–1362

    CAS  Google Scholar 

  • Neu TR (1992) Microbial “footprints” and the general ability of microorganisms to label interfaces. Can J Microbiol 38: 1005–1008

    Google Scholar 

  • Neu TR (1994) The challenge to analyse extracellular polymers in biofilms. In: Stal LJ, Caumette P (eds) Microbial mats, structure, development and environmental significance. NATO ASI Series-vol G 35. Springer, Berlin Heidelberg New York, pp 221–227

    Google Scholar 

  • Neu TR (1994) The challenge to analyse extracellular polymers in biofilms. In: Stal LJ, Caumette P (eds) Microbial mats, structure, development and environmental significance. NATO ASI Series-vol G 35. Springer, Berlin Heidelberg New York, pp 221–227

    Google Scholar 

  • Neu TR (1999b) In situ confocal laser scanning microscopy (CLSM) of river snow (submitted) Neu TR, Lawrence JR (1997) Development and structure of microbial biofilms in river water studied by confocal laser scanning microscopy. FEMS Microbiol Ecol 24: 11–25

    Google Scholar 

  • Neu TR, Marshall KC (1991) Microbial “footprints”-a new approach to adhesive polymers. Biofouling 3: 101–112

    Google Scholar 

  • Neu TR, Dengler T, Jann B, Poralla K (1992) Structural studies of an emulsion-stabilizing exopolysaccharide produced by an adhesive, hydrophobic Rhodococcus strain. J Gen Microbiol 138: 2531–2537

    CAS  Google Scholar 

  • Nichols PD, Henson JM, Guckert JB, Nivens DE, White DC (1985) Fourier transform-infrared spectroscopic methods for microbial ecology: analysis of bacteria, bacteria-polymer mixtures and biofilms. J Microbiol Meth 4: 79–94

    CAS  Google Scholar 

  • Nivens DE, Chambers JQ, Anderson TR, Tunlid A, Smit J, White DC (1993) Monitoring microbial adhesion and biofilm formation by attenuated total reflection/Fourier transform infrared spectrsoscopy. J Microbiol Meth 17: 199–213

    Google Scholar 

  • Nivens DE, Palmer RJ Jr, White DC (1995) Continuous non-destructive monitoring of micro-bial biofilms: a review of analytical techniques. J Indust Microbiol 15: 263–276

    CAS  Google Scholar 

  • Ong CJ, Wong MLY, Smit J (1990) Attachment of the adhesive holdfast organelle to the cellular stalk of Caulobacter crescentus. J Bacteriol 172: 1448–1456

    CAS  Google Scholar 

  • Paul JH, Jeffrey WH (1985) Evidence for separate adhesion mechanisms for hydrophilic and hydrophobic surfaces in Vibrio proteolytica. Appl Environ Microbiol 50: 431–437

    CAS  Google Scholar 

  • Pawley JB (1995) Handbook of biological confocal microscopy. Plenum Press, New York

    Google Scholar 

  • Perlin AS, Casu B (1982) Spectroscopic methods. In: Aspinall GO (ed) The polysaccharides, vol I. Academic Press, New York, pp 133–196

    Google Scholar 

  • Poulsen LK, Ballard G, Stahl DA (1993) Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl Environ Microbiol 59: 1354–1360

    CAS  Google Scholar 

  • Quintero EJ, Weiner RM (1995) Evidence for the adhesive function of the exopolysaccharide of Hyphomonas strain MHS-3 in its attachment to surfaces. Appl Environ Microbiol 61: 1897–1903

    CAS  Google Scholar 

  • Rees DA, Morris ER, Thom D, Madden JK (1982) Shapes and interaction of carbohydrate chains. In: Aspinall GO (ed) The polysaccharides, vol I. Academic Press, New York, pp 185–290

    Google Scholar 

  • Revsbech NP, Jörgensen BB (1986) Microelectrodes: their use in microbial ecology. Adv Microbial Ecol 9: 293–352

    Google Scholar 

  • Richards SR, Turner RJ (1984) A comparative study of techniques for the examination of bio-films by scanning electron microscopy. Wat Res 18: 767–773

    CAS  Google Scholar 

  • Rogers J, Keevil CW (1992) Immunogold and fluorescein immunolabelling of Legionella pneumophila within an aquatic biofilm visualised by using episcopic differential interference contrast microscopy. Appl Environ Microbiol 58: 2326–2330

    CAS  Google Scholar 

  • Russ JC (1990) Computer-assisted microscopy: the measurement and analysis of images Plenum Press, New York

    Google Scholar 

  • Russ JC (1995) The image processing handbook. CRC Press, Boca Raton

    Google Scholar 

  • Sanford BA, Thomas VL, Mattingly SJ, Ramsay MA, Miller MM (1995) Lectin-biotin assay for slime present in in situ biofilm produced by Staphylococcus epidermidis using transmission electron microscopy ( TEM ). J Indust Microbiol 15: 156–161

    CAS  Google Scholar 

  • Sayler GS, Layton AC (1990) Environmental application of nucleic acid hybridization. Annu Rev Microbiol 44: 625–648

    CAS  Google Scholar 

  • Schloter M, Borlinghaus R, Bode W, Hartmann A (1993) Direct identification, and localization of Azospirillum in the rhizosphere of wheat using fluorescence-labelled monoclonal antibodies and confocal scanning laser microscopy. J Microsc 171: 173–7

    Google Scholar 

  • Schloter M, Assmuss B, Hartmann A (1995) The use of immunological methods to detect and identify bacteria in the environment. Biotech Adv 13: 75–90

    CAS  Google Scholar 

  • Schloter M, Wiehe W, Assmus B, Steindl H, Becke H, Höflich G, Hartmann A (1997) Root colonization of different plants by plant-growth-promoting Rhizobium leguminosarum by. trifolii R39 studied with monospecific polyclonal antisera. Appl Environ Microbiol 63: 2038–2046

    CAS  Google Scholar 

  • Schmidt JE, Ahring BK (1994) Extracellular polymers in granular sludge from different an-aerobic sludge blanket ( UASB) reactors. Appl Microbiol Biotechnol 42: 457–462

    CAS  Google Scholar 

  • Schmitt J, Flemming H-C (1998) FTIR-spectroscopy in microbial and material analysis. Int Biodeter 8 Biodegr 41: 1–11

    CAS  Google Scholar 

  • Schmitt J, Nivens D, White DC, Flemming H-C (1995) Changes of biofilm properties in res-ponse to sorbed substances-an FTIR-ATR study. Water Sci Technol 32: 149–155

    CAS  Google Scholar 

  • Sizemore RK, Caldwell JJ, Kendrick AS (1990) Alternate Gram staining technique using a flu-orescent lectin. Appl Environ Microbiol 56: 2245–2247

    CAS  Google Scholar 

  • Späth R, Flemming H-C, Wirtz S (1998) Sorption properties of biofilms. Water Science Technol 37: 207–210

    Google Scholar 

  • Stevens JK (1994) Introduction to confocal three-dimensional volume investigation. In: Stevens JK, Mills LR, Trogadis JE (eds) Three dimensional confocal microscopy: volume investigation of biological systems. Academic Press, New York, pp 3–24

    Google Scholar 

  • Stoodley P, De Beer D, Lewandowski Z (1994) Liquid flow in biofilm systems. Appl Environ Microbiol 60: 2711–2716

    CAS  Google Scholar 

  • Suci PA, Siedlecki KJ, Palmer RJ Jr, White DC, Geesey GG (1997) Combined light microscopy and attenuated total reflection Fourier transform infrared spectroscopy for integration of biofilm structure, distribution, and chemistry at solid-liquid interfaces. Appl Environ Microbiol 63: 4600–4603

    CAS  Google Scholar 

  • Surman SB, Walker JT, Goddard DT, Morton LHG, Keevil CW, Weaver W, Skinner A, Hanson K, Caldwell D, Kurtz J (1996) Comparison of microscopic techniques for the examination of biofilms. J Microbiol Meth 25: 57–70

    Google Scholar 

  • Vasse JM, Dazzo FB, Truchet GL (1994) Reexamination of capsule development and lectinbinding sites on Rhizobium japonicum 311B110 by glutaraldehyde/ruthenium red/uranyl acetate staining method. J Gen Microbiol 130: 3037–3047

    Google Scholar 

  • Viles CL, Sieracki ME (1992) Measurement of marine picoplankton cell size by using a cooled charge-coupled device camera with image-analyzed fluorescence microscopy. Appl Environ Microbiol 58: 584–592

    CAS  Google Scholar 

  • Ward DM (1989) Molecular probes for analysis of microbial communities. In: Characklis WG, Wilderer PA (eds) Structure and function of biofilms. Wiley, New York, pp 145–163

    Google Scholar 

  • Wetzel, RG, Ward AK, Stock M (1997) Effects of natural dissolved organic matter on mucila-ginous matrices of biofilm communities. Arch Hydrobiol 139: 289–299

    CAS  Google Scholar 

  • White DC (1986) Non-destructive biofilm analysis by Fourier transform spectroscopy (FT/IR). In: Megusar F, Gantar M (eds) Perspectives in microbial ecology. Slovene Society for Microbiology, pp 442–446

    Google Scholar 

  • Williams SNO, Callies RM, Brindle KM (1997) Mapping of oxygen tension and cell distribution in a hollow-fiber bioreactor using magnetic resonance imaging. Biotechnol Bioeng 56: 56–61

    CAS  Google Scholar 

  • Wolfaardt GM, Lawrence JR, Headley JV, Robarts RD, Caldwell DE (1994 a) Microbial exopolymers provide a mechanism for bioaccumulation of contaminants. Microb Ecol 27: 279–291

    CAS  Google Scholar 

  • Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell DE (1994b) Multicellular organization in a degradative biofilm community. Appl Environ Microbiol 60: 434–446

    CAS  Google Scholar 

  • Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell DE (1995) Bioaccumulation of the herbicide diclofop in extracellular polymers and its utilization by a biofilm community during starvation. Appl Environ Microbiol 61: 152–158

    CAS  Google Scholar 

  • Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell DE (1998) In situ characterization of bio-film exopolymers involved in the accumulation of chlorinated compounds. Microb Ecol 35: 213–223

    CAS  Google Scholar 

  • Wood PJ (1980) Specificity in the interaction of direct dyes with polysaccharides. Carbohydr Res 85: 271–287

    CAS  Google Scholar 

  • Yagoda-Shagam J, Barton LL, Reed WP, Chiovetti (1988) Fluorescein isothiocyanate-labeled lectin analysis of the surface of the nitrogen-fixing bacterium Azospirillum brasilense by flow cytometry. Appl Environ Microbiol 54: 1831–1837

    CAS  Google Scholar 

  • Zambon JJ, Huber PS, Meyer AE, Slots J, Fornalik MS, Baier RE (1984) In situ identification of bacterial species in marine microfouling films by using immunofluorescence technique. Appl Environ Microbiol 4: 1214–1220

    Google Scholar 

  • Zita A, Hermansson M (1997) Determination of bacterial cell surface hydrophobicity of single cells in culture and in wastewater in situ. FEMS Microbiol Ecol 152: 299–306

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Neu, T.R., Lawrence, J.R. (1999). In Situ Characterization of Extracellular Polymeric Substances (EPS) in Biofilm Systems. In: Wingender, J., Neu, T.R., Flemming, HC. (eds) Microbial Extracellular Polymeric Substances. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60147-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60147-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64277-7

  • Online ISBN: 978-3-642-60147-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics