Skip to main content

Physiology, Regulation, and Limits of the Synthesis of Poly(3HB)

  • Chapter
  • First Online:
Biopolyesters

Abstract

The properties of poly(3-hydroxybutyrate) combined with the fact that it can be produced easily by numerous prokaryotes from renewable resources and even from potentially toxic waste products using well-known fermentation processes have generated keen interest in this biopolyester as a substitute for chemo-synthetic petroleum-derived polymers in many applications. However, the high price of poly(3HB) compared with the conventional synthetic materials currently in use has restricted its availability in a wide range of applications. If the economic viability of poly(3HB) production and its competitiveness are to be improved, more must be found out about the phenotypic optimization and the upper limits of bacterial systems as the factory of poly(3HB). In this chapter, two aspects of poly(3HB) are reviewed — poly(3HB) formation as a physiological response to external limitations and overcoming internal bottlenecks, and poly(3HB) as a commercially attractive polyester. From a physiologial viewpoint, the ability to synthesize and degrade poly(3HB) is considered an investment in the future and provides organisms with a selective advantage. Poly(3HB) is presented as a strategic survival polymer, and it is shown that growth-associated synthesis is not as rare as reported. The influence of the efficiency and velocity of cell multiplication and product formation, of poly(3HB) content and of productivity on the overall yield, and finally on the economics of the whole process are discussed and evaluated from the technological or consumer’s point of view. The specific production rate and poly(3HB) content appear to be more important than the yield coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brandl H, Gross RA, Lenz RW, Fuller RC (1990) Adv Biochem Engin/Biotechnol 41:77

    Article  CAS  Google Scholar 

  2. Anderson AJ, Dawes EA (1990) Microbiol Rev 54:450

    CAS  Google Scholar 

  3. Steinbüchel A (1991) In: Byrom D (ed) Biomaterials. Stockton Press, New York, p 124

    Google Scholar 

  4. Dawes EA, Senior PJ (1973) Adv Microbial Physiol 10:135

    Article  CAS  Google Scholar 

  5. Babel W (1992) FEMS Microbiol Rev 103:141

    Article  CAS  Google Scholar 

  6. Macrae RM, Wilkinson JF (1958) J Gen Microbiol 19:210

    CAS  Google Scholar 

  7. Neijssel OM, Tempest DW (1979) Symp Soc Gen Microbiol 29:53

    CAS  Google Scholar 

  8. Merrick JM, Doudoroff M (1961) Nature 189:890

    Article  CAS  Google Scholar 

  9. Steinbüchel A, Aerts K, Babel W, Föllner C, Liebergesell M, Madkour MH, Mayer F, Pieper-Fürst U, Pries A, Valentin HE, Wieczorek R (1995) Can J Microbiol 41(Suppl 1):94

    Article  Google Scholar 

  10. Senior PJ, Dawes EA (1973) Biochem J 134:225

    CAS  Google Scholar 

  11. Haywood GW, Anderson AJ, Chu L, Dawes EA (1988) FEMS Microbiol Lett 52:91

    Article  CAS  Google Scholar 

  12. Nishimura T, Saito T, Tomita K (1978) Arch Microbiol 116:21

    Article  CAS  Google Scholar 

  13. Williams DR, Anderson AJ, Dawes EA (1993) In: Schlegel HG, Steinbüchel A (eds) Proc Internat Symp Biol Polyhydroxyalkanoates’ 92 (ISBP’92) Göttingen. Golze-Druck, Göttingen, p 387

    Google Scholar 

  14. Mothes G, Skinfill Rivera I, Babel W (1997) Arch Microbiol 166:405

    Article  Google Scholar 

  15. Haywood GW, Anderson AJ, Chu L, Dawes EA (1988) FEMS Microbiol Lett 52:259

    Article  CAS  Google Scholar 

  16. Moskowitz GJ, Merrick JM (1969) Biochemistry 8:2748

    Article  CAS  Google Scholar 

  17. Mothes G, Babel W (1995) Can J Microbiol 41(Suppl 1): 124

    Google Scholar 

  18. Doi Y, Kitamura S, Abe H (1995) Macromolecules 28:4822

    Article  CAS  Google Scholar 

  19. Saito T, Fukui T, Ikeda F, Tanaka Y, Tomita K (1977) Arch Microbiol 114:211

    Article  CAS  Google Scholar 

  20. Mothes G, Babel W (1994) Arch Microbiol 161:68

    Google Scholar 

  21. Bloomfield G, Sandhu G, Carr NG (1969) FEBS Lett 5:246

    Article  CAS  Google Scholar 

  22. Ritchie GAF, Senior PJ, Dawes EA (1971) Biochem J 121:309

    CAS  Google Scholar 

  23. Amos DA, McInerney MJ (1993) Arch Microbiol 159:16

    Article  CAS  Google Scholar 

  24. Liebergesell M, Steinbüchel A (1992) Eur J Biochem 209:135

    Article  CAS  Google Scholar 

  25. Rehm BHA, Steinbüchel A (1999) Int J Biol Macromol 25:3

    Article  CAS  Google Scholar 

  26. Haywood GW, Anderson AJ, Dawes EA (1989) Biotechnol Lett 11:471

    Article  CAS  Google Scholar 

  27. Doi Y, Kunioka M, Nakamura Y, Soga K (1987) Macromolecules 20:2988

    Article  CAS  Google Scholar 

  28. Doi Y, Tamaki A, Kunioka M, Soga K (1987) J Chem Soc Chem Commun 1635

    Google Scholar 

  29. Doi Y, Tamaki A, Kunioka M, Soga K (1988) Appl Microbiol Biotechnol 28:330

    Article  CAS  Google Scholar 

  30. Haywood GW, Anderson AJ, Dawes EA (1989) FEMS Microbiol Lett 57:1

    Article  CAS  Google Scholar 

  31. Valentin HE, Schönebaum A, Steinbüchel A (1992) Appl Microbiol Biotechnol 36:507

    Article  CAS  Google Scholar 

  32. Huisman GW, de Leeuw O, Eggingk G, Witholt B (1989) Appl Environ Microbiol 55:1949

    CAS  Google Scholar 

  33. Gerngross TU, Martin DP (1995) Proc Natl Acad Sci USA 92:6279

    Article  CAS  Google Scholar 

  34. Su L, Lenz RW, Martin DP (2000) Macromolecules (in press) (refer to [99])

    Google Scholar 

  35. Sim SJ, Snell KD, Hogan SA, Stubbe J, Rha C, Sinskey AJ (1997) Nat Biotechnol 15:63

    Article  CAS  Google Scholar 

  36. Kraak MN, Smits THM, Kessler B, Witholt B (1997) J Bacteriol 179:4985

    CAS  Google Scholar 

  37. Braunegg G, Lefebvre G, Genser KF (1998) J Biotechnol 65:127

    Article  CAS  Google Scholar 

  38. Kunioka M, Kawagushi Y, Doi Y (1989) Appl Microbiol Biotechnol 30:569

    Article  CAS  Google Scholar 

  39. Valentin HE, Zwingmann G, Schönebaum A, Steinbüchel A (1995) Eur J Biochem 227:43

    Article  CAS  Google Scholar 

  40. Williams DR, Anderson AJ, Dawes EA, Ewing DF (1994) Appl Microbiol Biotechnol 40:717

    Article  CAS  Google Scholar 

  41. Haywood GW, Anderson AJ, Ewing DF, Dawes EA (1990) Appl Environ Microbiol 56: 3354

    CAS  Google Scholar 

  42. Huijberts GN, Eggink G, de Waard P, Huisman GW, Witholt B (1992) Appl Environ Microbiol 58:536

    CAS  Google Scholar 

  43. DeSmet MJ, Eggink GM, Witholt B, Kingma J, Wynberg H (1983) J Bacteriol 154:870

    CAS  Google Scholar 

  44. Lageveen RG, Huisman GW, Preusting H, Ketelae P, Eggingk G, Witholt B (1988) Appl Environ Microbiol 54:2924

    CAS  Google Scholar 

  45. Weitzman PDJ (1981) Adv Microbial Physiol 22:185

    Article  CAS  Google Scholar 

  46. Müller-Kraft G, Babel W (1986) Biol Rundsch 24:165

    Google Scholar 

  47. Belova LL, Sokolov AP, Morgunov IG, Trotsenko YA (1997) Biochemistry 62:71

    CAS  Google Scholar 

  48. Henderson RA, Jones CW (1997) Arch Microbiol 168:486

    Article  CAS  Google Scholar 

  49. Oeding V, Schlegel HG (1973) Biochem J 134:239

    CAS  Google Scholar 

  50. Tomita K, Saito T, Fukui T (1983) In: Lennon DLF, Stratman FW, Zahlten RN (eds) Biochemistry of metabolic processes. Elsevier Science Publishing, p 353

    Google Scholar 

  51. Fukui T, Ito M, Saito T, Tomita K (1987) Biochim Biophys Acta 917:365

    CAS  Google Scholar 

  52. Belova LL, Trotsenko YA, Sokolov AP, Sidonov IA (1997) FEMS Microbiol Lett 156:275

    Article  CAS  Google Scholar 

  53. Belova LL, Sokolov AP, Trotsenko YA (1997) Appl Biochem Microbiol 33:70

    Google Scholar 

  54. Jackson FA, Dawes EA (1976) J Gen Microbiol 97:303

    CAS  Google Scholar 

  55. Mothes G, Ackermann J-U, Babel W (1998) Arch Microbiol 144:62

    Google Scholar 

  56. Stouthamer AH (1973) Antonie van Leeuwenhoek 39:545

    Article  CAS  Google Scholar 

  57. Van Dijken JP, Harder W (1975) Biotech Bioeng 17:15

    Article  Google Scholar 

  58. Babel W, Brinkmann U, Müller RH (1993) Acta Biotechnol 13:211

    Article  CAS  Google Scholar 

  59. Shi H, Shimizu K, Shiraishi M (1997) J Ferment Bioeng 84:579

    Article  CAS  Google Scholar 

  60. Braunegg G, Bogensbergen B (1985) Acta Biotechnol 5:339

    Article  CAS  Google Scholar 

  61. Wang F, Lee SY (1997) Appl Environ Microbiol 63:3703

    CAS  Google Scholar 

  62. Jendrossek D, Schirmer A, Schlegel HG (1996) Appl Microbiol Biotechnol 46:451

    Article  CAS  Google Scholar 

  63. Jendrossek D (1998) Polym Degrad Stabil 59:317

    Article  CAS  Google Scholar 

  64. Hippe H, Schlegel HG (1976) Arch Mikrobiol 56:278

    Google Scholar 

  65. Daniel M, Choi JH, Kim JH, Lebeault JM (1992) Appl Microbiol Biotechnol 37:702

    CAS  Google Scholar 

  66. Kovar J, Matyskova I, Matyska L (1986) Biochim Biophys Acta 871:302

    CAS  Google Scholar 

  67. Fukui T, Ito M, Tomita K (1982) EurJ Biochem 127:423

    Article  CAS  Google Scholar 

  68. Atkinson DE (1966) Ann Rev Biochem 35:85

    Article  CAS  Google Scholar 

  69. Knowles JC (1977) Symp Soc Gen Microbiol 27:241

    CAS  Google Scholar 

  70. Ritchie GAF (1968) PhD thesis, University of Hull

    Google Scholar 

  71. Pries A, Priefert H, Krüger N, Steinbüchel A (1991) J Bacteriol 173:5843

    CAS  Google Scholar 

  72. Babel W (1986) Acta Biotechnol 6:215

    Article  CAS  Google Scholar 

  73. Babel W (1990) Biotech Adv 8:261

    Article  CAS  Google Scholar 

  74. Ackermann J-U, Babel W (1997) Appl Microbiol Biotechnol 47:144

    Article  CAS  Google Scholar 

  75. Anthony C (1982) The biochemistry of methylotrophs. Academic Press

    Google Scholar 

  76. Tal S, Okon Y (1985) Can J Microbiol 31:608

    CAS  Google Scholar 

  77. Macrae RM, Wilkinson JF (1958) Proc R Phys Soc Edin 27:73

    Google Scholar 

  78. Schlegel H-G, Gottschalk G, vonBartha R (1961) Nature 191:463

    Article  CAS  Google Scholar 

  79. Leonard D, Lindley ND (1998) Microbiology 144:241

    Article  CAS  Google Scholar 

  80. Hughes EJ, Bayly RC (1983) J Bacteriol 154:1363

    CAS  Google Scholar 

  81. Hueting S, Tempest DW (1977) Arch Microbiol 155:73

    Article  Google Scholar 

  82. Byrom D (1987) Tibtech 5:246

    CAS  Google Scholar 

  83. Babel W, Riis V, Hainich E (1990) Plaste und Kautschuk 37:109

    CAS  Google Scholar 

  84. Knowles JC (1993) J Med Engin Technol 17:129

    Article  CAS  Google Scholar 

  85. Babel W (1997) Bio World 4:16

    Google Scholar 

  86. Hilger U, Sattler K, Littkowski U (1991) Zentralbl Mikrobiol 146:83

    CAS  Google Scholar 

  87. Lee SY (1996) Biotechnol Bioeng 49:1

    Article  CAS  Google Scholar 

  88. De Koning GJM, Lemstra PJ (1993) Polymer 34:4089

    Article  Google Scholar 

  89. Lengweiler UD, Fritz MG, Seebach D (1996) Helv Chim Acta 79:670

    Article  CAS  Google Scholar 

  90. Seebach D, Fritz MG (1999) Int J Biol Macromol 25:217

    Article  CAS  Google Scholar 

  91. Müller RH, Babel W (1988) Acta Biotechnol 8:249

    Article  Google Scholar 

  92. Müller RH, Babel W (1986) Acta Biotechnol 144:62

    Google Scholar 

  93. Ackermann J-U, Babel W (1998) Polym Degrad Stabil 59:183

    Article  CAS  Google Scholar 

  94. Bitar A, Underhill S (1990) Biotechnol Lett 12:563

    Article  CAS  Google Scholar 

  95. Aragao GMF, Lindley ND, Uribelarrea JL, Pareilleux A (1996) Biotechnol Lett 18:937

    Article  CAS  Google Scholar 

  96. Suzuki T, Yamane T, Shimizu S (1986) Appl Microbiol Biotechnol 24:366

    Article  CAS  Google Scholar 

  97. Suzuki T, Yamane T, Shimizu S (1986) Appl Microbiol Biotechnol 24:370

    Article  CAS  Google Scholar 

  98. Page WJ, Knosp O (1989) Appl Environ Microbiol 55:1334

    CAS  Google Scholar 

  99. Lee SY (1996) Tibtech 14:431

    CAS  Google Scholar 

  100. Ryu HW, Hahn SK, Chang YK, Chang HN (1997) Biotechnol Bioeng 55:28

    Article  CAS  Google Scholar 

  101. Lee SY, Choi J (1998) Polym Degrad Stabil 59:387

    Article  CAS  Google Scholar 

  102. Choi J, Lee SY (1999) Appl Microbiol Biotechnol 51:13

    Article  CAS  Google Scholar 

  103. Lee SY, Chang HN (1995) Can J Microbiol 41(Suppl 1):207

    Article  CAS  Google Scholar 

  104. Madison LA, Huisman GW (1999) Microbiol Mol Biol Rev 63:21

    CAS  Google Scholar 

  105. Byrom D (1992) FEMS Microbiol Rev 103:247

    CAS  Google Scholar 

  106. Hrabak O (1992) FEMS Microbiol Rev 103:251

    CAS  Google Scholar 

  107. Manchak J, Page WJ (1994) Microbiol 140:953

    Article  CAS  Google Scholar 

  108. Kim SW, Kim P, Lee HS, Kim JH (1996) Biotechnol Lett 18:25

    Article  CAS  Google Scholar 

  109. Wendlandt K-D, Jeschorek M, Helm J, Stottmeister U (1998) Polym Degrad Stabil 59:191

    Article  CAS  Google Scholar 

  110. Kim BS, Chang HN, Lee SY (1992) Biotechnol Lett 14:811

    Article  CAS  Google Scholar 

  111. Choi JI, Lee SY, Han K (1998) Appl Environ Microbiol 64:4897

    CAS  Google Scholar 

  112. Wang F, Lee SY (1998) Biotechnol Bioeng 58:325

    Article  CAS  Google Scholar 

  113. Ackermann J-U, Mothes G, Babel W (1999) ISEB’ 99 Meeting Biopolymers Leipzig (in press)

    Google Scholar 

  114. Senior PJ, Beech GA, Ritchie GA, Dawes EA (1972) Biochem J 128:1193

    CAS  Google Scholar 

  115. Wilkinson JF, Munro AS (1967) In: Powell EO, Evans CGT, Strange RE, Tempest DW (eds) Microbial physiology and continuous culture. HMSO, London, p 173

    Google Scholar 

  116. Morinaga Y, Yamanaka S, Ishizaki A, Hirose Y (1978) Agric Biol Chem 42:439

    CAS  Google Scholar 

  117. Siegel RS, Ollis DF (1984) Biotechnol Bioeng 26:764

    Article  CAS  Google Scholar 

  118. Duchars MG, Attwood MM (1989) J Gen Microbiol 135:787

    CAS  Google Scholar 

  119. Ramsay BA, Lomaliza K, Chavarie C, Dube B, Bataille P, Ramsay JA (1990) Appl Environ Microbiol 56:2093

    CAS  Google Scholar 

  120. Egli T (1991) Antonie van Leeuwenhoek 60:225

    Article  CAS  Google Scholar 

  121. de Hollander JA (1993) Antonie van Leeuwenhoek 63:375

    Article  Google Scholar 

  122. Park J-S, Lee YH (1996) J Ferment Bioeng 81:197

    Article  CAS  Google Scholar 

  123. Yamane T, Fukunaga M, Lee YW (1996) Biotechnol Bioeng 50:197

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Babel, W., Ackermann, JU., Breuer, U. (2001). Physiology, Regulation, and Limits of the Synthesis of Poly(3HB). In: Babel, W., Steinbüchel, A. (eds) Biopolyesters. Advances in Biochemical Engineering/Biotechnology, vol 71. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40021-4_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-40021-4_4

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41141-3

  • Online ISBN: 978-3-540-40021-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics