Skip to main content
Log in

Seed coats: Structure, development, composition, and biotechnology

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Although seeds have been the subject of extensive studies for many years, their seed coats are just beginning to be examined from the perspective of molecular genetics and control of development. The seed coat, plays a vital role in the life cycle of plants by controlling the development of the embryo and determining seed dormancy and germination. Within the seed coat are a number of unique tissues that undergo differentiation to serve specific functions in the seed. A large number of genes are known to be specifically expressed within the seed coat tissues; however, very few of them are understood functionally. The seed coat synthesizes a wide range of novel compounds that may serve the plant in diverse ways, including defense and control of development. Many of the compounds are sources of industrial products and are components of food and feeds. The use of seed coat biotechnology to enhance seed quality and yield, or to generate novel components has not been exploited, largely because of lack of knowledge of the genetic systems that govern seed coat development and composition. In this review, we will examine the recent advances in seed coat, biology from the perspective of structure, composition and molecular genetics. We will consider the diverse avenues that are possible for seed coat biotechnology in the future. This review will focus principally on the seed coats of the Brassicaceae and Fabaceae as they allow us to merge the areas of molecular biology, physiology and structure to gain a perspective on the possibilities for seed coat modifications in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahams, S.; Lee, E.; Walker, A. R.; Tanner, G. J.; Larkin, P. J.; Ashton, A. R. The Arabidopsis TDS4 gene encodes leucoanthocyanidin dioxygenase (LDOX) and is essential for proanthocyanidin synthesis and vacuole development. Plant J. 35:624–636; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Abrahams, S.; Tanner, G. J.; Larkin, P. J.; Ashton, A. R. Identification and biochemical characterization of mutants in the proanthocyanidin pathway in Arabidopsis. Plant Physiol. 130:561–576; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Aerts, R. J.; Barry, T. N.; McNabb, W. C. Polyphenols and agriculture: beneficial effects of proanthocyanidins in forages. Agric. Ecosyst. Environ. 75:1–12; 1999.

    Article  CAS  Google Scholar 

  • Akada, S.; Dube, S. K. Organization of soybean chalcone synthase gene clusters and characterization of a new member of the family. Plant Mol. Biol. 29:189–199; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Akada, S.; Kung, S.-D.; Dube, S. K. The nucleotide sequence of gene 3 of the soybean chalcone synthase multigene family Nucleic Acids Res. 18:5899; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Akada, S.; Kung, S.-D.; Dube, S. K. The nucleotide sequence of gene 1 of the soybean chalcone synthase multigene family. Plant Mol. Biol. 16:751–752; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Akada, S.; Kung, S.-D.; Dube, S. K. Nucleotide sequence and putative regulatory elements of gene 2 of the soybean (Glycine max) chalcone synthase multigene family. Plant Physiol. 102:317–319; 1993a.

    Article  PubMed  CAS  Google Scholar 

  • Akada, S.; Kung, S.-D.; Dube, S. K. Nucleotide sequence of a soybean chalcone synthase gene with a possible role in ultraviolet-B sensitivity, Gmchs6. Plant Physiol. 102:699–701; 1993b.

    Article  PubMed  CAS  Google Scholar 

  • Akada, S.; Kung, S.-D.; Dube, S. K. Nucleotide sequence and putative regulatory elements of a nodule-development-specific member of the soybean (Glycine max) chalcone synthase multigene family, Gmchs7. Plant Physiol. 102:321–323; 1993c.

    Article  PubMed  CAS  Google Scholar 

  • Algan, G.; Büyükkartal, H. N. B. Ultrastructure of seed coat, development in the natural tetraploid Trifolium pratense L. J. Agron. Crop Sci. 184:205–213; 2000.

    Article  Google Scholar 

  • Alkharouf, N. W.; Matthews, B. F. SGMD: the soybean genomics and microarray database. Nucleic Acids Res. 32:D398-D400; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Applebaum, S. W.; Tadmor, U.; Podoler, H. The effect of starch and of a heteropolysaccharide fraction from Phaseolus vulgaris on development and fecundity of Callosobruchus chinensis (Coleoptera-Bruchidae). Entomol. Exp. Applicata 13:61–70; 1970.

    Article  CAS  Google Scholar 

  • Arenas-Mena, C.; Raynal, M.; Borrell, A.; Varoquaux, F.; Cutanda, M. C.; Stacy, R. A. P.; Pagès, M.; Delseny, M.; Culiáñez-Macià, F. A. Expression and cellular localization of Atrab28 during Arabidopsis embryogenesis. Plant Mol. Biol. 40:355–363; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Baker, S. C.; Robinson-Beers, K.; Villanueva, J. M.; Gaiser, J. C.; Gasser, C. S. Interactions among genes regulating ovule development in Arabidopsis thaliana. Genetics 145:1109–1124; 1997.

    PubMed  CAS  Google Scholar 

  • Balasubramanian, S.; Schneitz, K. NOZZLE regulates proximal-distal pattern formation, cell proliferation and early sporogenesis during ovule development in Arabidopsis thaliana. Development 127:4227–4238; 2000.

    PubMed  CAS  Google Scholar 

  • Balasubramanian, S.; Schneitz, K. NOZZLE links proximal-distal and adaxial-abaxial pattern formation during ovule development in Arabidopsis thaliana. Development 129:4291–4300; 2002.

    PubMed  CAS  Google Scholar 

  • Batchelor, A. K.; Boutilier, K.; Miller, S. S.; Hattori, J.; Bowman, L. A.; Hu, M.; Lantin, S.; Johnson, D. A.; Miki, B. L. A. SCB1, a BURP-domain protein gene from developing soybean seed coats. Planta 215:523–532; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Batchelor, A. K.; Boutilier, K.; Miller, S. S.; Labbé, H.; Bowman, L. A.; Hu, M.; Johnson, D. A.; Gijzen, M.; Miki, B. L. A. The seed coat-specific expression of a subtilisin-like gene, SCS1, from soybean. Planta 211:484–492; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Baudry, A.; Heim, M. A.; Dubreucq, B.; Caboche, M.; Weisshaar, B.; Lepiniec, L. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J. 39:366–380; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Baxter, I. R.; Young, J. C.; Armstrong, G.; Foster, N.; Bogenschutz, N.; Cordova, T.; Peer, W. A.; Hazen, S. P.; Murphy, A. S.; Harper, J. F. A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 102:2649–2654; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Beeckman, T.; De Rycke, R.; Viane, R.; Inzé, D. Histological study of seed coat development in Arabidopsis thaliana. J. Plant Res. 113:139–148; 2000.

    Article  Google Scholar 

  • Bekkara, F.; Jay, M.; Viricel, M. R.; Rome, S. Distribution of phenolic compounds within seed and seedlings of two Vicia faba cvs differing in their seed tannin content, and study of their seed and root phenolic exudations. Plant Soil 203:27–36; 1998.

    Article  Google Scholar 

  • Bell, C. J.; Dixon, R. A.; Farmer, A. D.; Flores, R.; Inman, J.; Gonzales, R. A.; Harrison, M. J.; Paiva, N. L.; Scott, A. D.; Weller, J. W.; May, G. D. The Medicago genome initiative: a model legume database. Nucleic Acids Res. 29:114–117; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Benitez, E. R.; Funatsuki, H.; Kaneko, Y.; Matsuzawa, Y.; Bang, S. W.; Takahashi, R. Soybean maturity gene effects on seed coat pigmentation and cracking in response to low temperatures. Crop Sci. 44:2038–2042; 2004.

    Article  Google Scholar 

  • Berger, F. Endosperm development. Curr. Opin. Plant. Biol. 2:28–32; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Bernard, R. L.; Weiss, M. G. Qualitative genetics, In: Caldwell, B. E., ed. Soybeans: Improvement, production and uses, 1st ed. Madison, WI: American Society of Agronomy; 1973:117–149.

    Google Scholar 

  • Bewley, J. D. Seed germinatin and dormancy. Plant Cell 9:1055–1066; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Borisjuk, L.; Walenta, S.; Weber, H.; Mueller-Klieser, W.; Wobus, U. High resolution histographical mapping of glucose concentrations in developing cotyledons of Vicia faba in relation to mitotic activity and storage processes: glucose as a possible developmental trigger. Plant J. 15:583–591; 1998.

    Article  CAS  Google Scholar 

  • Bouman, F. Integument initiation and testa development in some Cruciferae. Bot. J. Linn. Soc. 70:213–229; 1975.

    Google Scholar 

  • Bradley, D. J.; Kjellbom, P.; Lamb, C. J. Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70:21–30;1992.

    Article  PubMed  CAS  Google Scholar 

  • Brady, L.; Bassett, M. J.; McClean, P. E. Molecular markers associated with T and Z, two genes controlling partly colored seed coat patterns in common bean. Crop Sci. 38:1073–1075; 1998.

    Article  CAS  Google Scholar 

  • Broadhvest, J.; Baker, S. C.; Gasser, C. S. SHORT INTEGUMENTS 2 promotes growth during Arabidopsis reproductive development. Genetics 155:899–907; 2000.

    PubMed  CAS  Google Scholar 

  • Buchner, P.; Boutin, J.-P. A MADS box transcription factor of the AP1/AGL9 subfamily is also expressed in the seed coat of pea (Pisum sativum) during development. Plant Mol. Biol. 38:1253–1255; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Buchner, P.; Rochat, C.; Wuillème, S.; Boutin, J.-P. Characterization of a tissue-specific and developmentally regulated β-1,3-glucanase gene in pea (Pisum sativum). Plant Mol. Biol. 49:171–186; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Cabrera, A.; Martin, A. Variation in tannin content in Vicia faba L. J. Agric. Sci. 106:377–382; 1986.

    CAS  Google Scholar 

  • Cardador, M. A.; Castaño, T. E.; Loarca, P. G. Antimutagenic activity of natural phenolic compounds present in common bean (Phaseolus vulgaris) against aflatoxin B1. Food Addit. contam. 19:62–69; 2002.

    Article  CAS  Google Scholar 

  • Carlini, C. R.; Oliveira, A. E. A.; Azambuja, P.; Xavier-Filho, J.; Wells, M. A. Biological effects of canatoxin in different insect models: Evidence for a protolytic activation of the toxin by insect cathepsinlike enzymes. J. Econ. Entomol. 90:340–348; 1997.

    PubMed  CAS  Google Scholar 

  • Chamberlin, M. A.; Horner, H. T.; Palmer, R. G. Early endosperm, embryo, and ovule development in Glycine max (L.) Merr. Int. J. Plant. Sci. 155:421–436; 1994.

    Article  Google Scholar 

  • Chowdhury, D. M. S.; Rathjen, J. M.; Tate, M. E.; McDonald, G. Genetics of colour traits in common vetch (Vicia sativa L.) Euphytica 136:249–255; 2004.

    Article  CAS  Google Scholar 

  • Clements, J. C.; Zvyagin, A. V.; Silva, K. K. M. B.; Wanner, T.; Sampson, D. D.; Cowling, W. A. Optical coherence tomography as a novel tool for non-destructive measurement of the hull thickness of lupin seeds. Plant Breed. 123:266–270; 2004.

    Article  Google Scholar 

  • Collier, E.; Watkinson, A.; Cleland, C. F.; Roth, J. Partial purification and characterization of an insulin-like material from spinach and Lemna gibba G3. J. Biol. Chem. 262:6238–6247; 1987.

    PubMed  CAS  Google Scholar 

  • Collip, J. B.; Glucokinin. A new hormone present in plant tissue. Preliminary paper. J. Biol. Chem. 56:513–543; 1923.

    CAS  Google Scholar 

  • Colombo, L.; Franke, J.; Van der Krol, A. R.; Wittich, P. E.; Dons, H. J. M.; Angenent, G. C. Downregulation of ovule-specific MADS box genes from Petunia results in maternally controlled defects in seed development. Plant Cell 9:703–715; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Cook, D. R. Medicago trancatula—a model in the making! Curr. Opin. Plant Biol. 2:301–304; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Corner, E. J. H. The leguminous seed. Phytomorphology 1:117–150; 1951.

    Google Scholar 

  • Craik, D. J.; Daly, N. J.; Waine, C. The cystine knot motif in toxins and implications for drug design. Toxicon 39:43–60; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Dakora, F. D.; Phillip, D. A. Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins. Physiol. Mol. Plant Pathol. 49:1–20; 1996.

    Article  CAS  Google Scholar 

  • Debeaujon, I.; Koornneef, M. Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiol. 122:415–424; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Debeaujon, I.; Léon-Kloosterziel, K. M.; Koornneef, M. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol. 122:403–413; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Debeaujon, I.; Nesi, N.; Perez, P.; Devic, M.; Grandjean, O.; Caboche, M.; Lepiniec, L. Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. Plant Cell 15:2514–2531; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Debeaujon, I.; Peeters, A. J. M.; Léon-Kloosterziel, K. M.; Koornneef, M. The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of seed coat endothelium Plant Cell 13:853–871; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Dejardin, A.; Rochat, C.; Maugenest, S.; Boutin, J. P. Purification, characterization and physiological role of sucrose synthase in the pea seed coat (Pisum sativum L.). Planta 201:128–137; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Devic, M.; Guilleminot, J.; Debeaujon, I.; Bechtold, N.; Bensaude, E.; Koornneef, M.; Pelletier, G.; Delseny, M. The BANYLUS gene encodes a DFR-like protein and is a marker of early seed coat development. Plant J. 19:387–398; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Dhaubhadel, S.; McGarvey, B. D.; Williams, R.; Gijzen, M. Isoflavonoid biosynthesis and accumulation in developing soybean seeds. Plant Mol. Biol. 53:733–743; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Di Cristina, M.; Sessa, G.; Dolan, L.; Linstead, P.; Baima, S.; Ruberti, I.; Morelli, G. The Arabidopsis Athb-10 (GLABRA2) is an HD-Zip protein required for regulation of root hair development. Plant J. 10:393–402; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, R. A.; Paiva, N. L. Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Dueñas, M.; Estrella, I.; Hernández, T. Occurrence of phenolic compounds in the seed coat and the cotyledon of peas (Pisum sativum L.). Eur. Food Res. Technol. 219:116–123; 2004.

    Article  CAS  Google Scholar 

  • Dueñas, M.; Hernández, T.; Estrella, I. Phenolic composition of the cotyledon and the seed coat of lentils (Lens culinaris L.). Eur. Food Res. Technol. 215:478–483; 2002.

    Article  CAS  Google Scholar 

  • Elliott, R. C.; Betzner, A. S.; Huttner, E.; Oakes, M. P.; Tucker, W. Q. J.; Gerentes, D.; Perez, P.; Smyth, D. R. AINTEGUMENTA, an, APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155–168; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Emami, M. K.; Sharma, B. Inheritance of black testa colour in lentil (Lens culinaris Medik). Euphytica 115:43–47; 2000.

    Article  Google Scholar 

  • Ene-Obong, E. E.; Okoye, F. I. Effect of seed coat on water permeability in the African yam bean, Sphenostylis stenocarpa. Nigerian J. Bot. 6:43–51; 1993.

    Google Scholar 

  • Feinbaum, R. L.; Ausubel, F. M. Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Mol. Cell Biol. 8:1985–1992; 1988.

    PubMed  CAS  Google Scholar 

  • Finkelstein, R. R.; Gampala, S. S. L.; Rock, C. D. Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15-S45; 2002.

    PubMed  CAS  Google Scholar 

  • Flock, C.; Bassi, A.; Gijzen, M. Removal of aqueous phenol and 2-chlorophenol with purified soybean peroxidase and raw soybean hulls. J. Chem. Technol. Biotechnol. 74:303–309; 1999.

    Article  CAS  Google Scholar 

  • Forkman, G. Flavonoids as flower pigments: the formation of the natural spectrum and its extension by genetic engineering. Plant Breed. 106:1–26; 1991.

    Article  Google Scholar 

  • Frey, A.; Godin, B.; Bonnet, M.; Sotta, B.; Marion-Poll, A. Maternal synthesis of abscisic acid controls seed development and yield in Nicotiana plumbaginifolia. Planta 218:958–964; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Furbank, R. T.; White, R.; Palta, J. A.; Turner, N. C. Internal recycling of respiratory CO2 in pods of chickpea (Cicer arietinum L.): the role of pod walls, seed coat, and embryo. J. Exp. Bot. 55:1687–1696; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Gaiser, J. C.; Robinson-Beers, K.; Gasser, C. S. The Arabidopsis SUPERMAN gene mediates asymmetric growth of the outer integuments of ovules. Plant Cell 7:333–345; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, D.; Fitz Gerald, J. N.; Berger, F. Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis. Plant Cell 17:52–60; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Gatehouse, A. M. R.; Dobie, P.; Hodges, R. J.; Meik, J.; Puszlai, A.; Boulter, D. Role of carbohydrates in insect resistance in Phaseolus vulgaris. J. Insect Physiol. 33:843–850; 1987.

    Article  CAS  Google Scholar 

  • Geng, Z.; Bassi, A. S.; Gijzen, M. Enzymatic treatment of soils contaminated with phenols and chlorophenols using soybean seedhulls. Water, Air, Soil Pollut. 154:151–166; 2004.

    Article  CAS  Google Scholar 

  • Gibson, S. I. Sugar and phytohormone response pathways: navigating a signaling network J. Exp. Bot. 55:253–264; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Gijzen, M. A deletion mutation at the ep locus causes low seed coat peroxidase activity in soybean. Plant J. 12:991–998; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Gijzen, M.; Kuflu, K.; Quotob, D.; Chernys, J. T. A class I chitinase from soybean seed coat. J. Exp. Bot. 52:2283–2289; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Gijzen, M.; Miller, S. S.; Bowman, L.-A.; Batchelor, A. K.; Boutilier, K.; Miki, B. L. A. Localization of peroxidase mRNAs in soybean seeds by in situ hybridization. Plant Mol. Biol. 41:57–63; 1999a.

    Article  PubMed  CAS  Google Scholar 

  • Gijzen, M.; Miller, S. S.; Kuflu, K.; Buzell, R. I.; Miki, B. L. A. Hydrophobic protein synthesized in the pod endocarp adheres to the seed surface. Plant Physiol. 120:951–959; 1999b.

    Article  PubMed  CAS  Google Scholar 

  • Gijzen, M.; van Huystee, R.; Buzzell, R. I. Soybean seed coat peroxidase: a comparison of high and low activity genotypes. Plant Physiol. 103:1061–1066; 1993.

    PubMed  CAS  Google Scholar 

  • Gijzen, M.; Weng, C.; Kuflu, K.; Woodrow, L.; Yu, K.; Poysa, V. Soybean seed lustre phenotype and surface protein cosegregate and map to linkage group E. Genome 46:659–664; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Gillikin, J. W.; Graham, J. S. Purification and developmental analysis of the major anionic peroxidase from the seed coat of Glycine max. Plant Physiol. 96:214–220; 1991.

    PubMed  CAS  Google Scholar 

  • Golden, T. A.; Schauer, S. E.; Lang, J. D.; Pien, S.; Mushegian, A. R.; Grossniklaus, U.; Meinke, D. W.; Ray, A. SHORT INTEGUM-ENTS1/SUSPENSORI/CARPEL FACTORY, a dicer homolog, is a maternal effect gene required for embryo development in Arabidopsis. Plant Physiol. 130:808–822; 2002.

    Article  PubMed  Google Scholar 

  • Golovan, S. P.; Meidinger, R. G.; Ajakaiye, A.; Cottrill, M.; Wiederkehr, M. Z.; Barney, D. J.; Plante, C.; Pollard, J. W.; Fan, M. Z.; Hayes, M.; Laursen, J.; Hjorth, J. P.; Hacker, R. R.; Phillips, J. P.; Forsberg, C. W. Pigs expressing salivary phytase produce low-phosphorus manure. Nat. Biotechnol. 19:741–745; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Gonzales, M. D.; Archuleta, E.; Farmer, A.; Gajendran, K.; Grant, D.; Shoemaker, R.; Beavis, W. D.; Waugh, M. E. The legume information system (LIS): an integrated information resource for comparative legume biology. Nucleic Acids Res. 33:D660-D665; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, R.; Valera, J.; Carreira, J.; Polo, F. Soybean hydrophobic protein and soybean hull allergy. Lancet 346:48–49. 1995.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, D. B. P.; Davis, W. L. Insulin accelerates the post germinative development of several fat-storing seeds. Biochem. Biophys. Res. Commun. 190:400–446; 1993.

    Article  Google Scholar 

  • Goto, N. A mucilage polysaccharide secreted from testa of Arabidopsis thaliana. Arabid. Inf. Serv. 22:143–145; 1985.

    Google Scholar 

  • Graham, M. A.; Silverstein, K. A. T.; Cannon, S. B.; VandenBosch, K. A. Computational identification and characterization of novel genes from legumes. Plant Physiol. 135:1179–1197; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Granger, C.; Coryell, V.; Khamma, A.; Keim, P.; Vodkin, L.; Shoemaker, R. C. Identification, structure, and differential expression of members of a BURP domain containing protein family in soybean. Genome 45:693–701; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Gressent, F.; Rahioui, I.; Rahbé, Y. Characterization of a high-affinity binding site for the pea albumin Ib entomotoxin in the weevil Sitophilus. Eur. J. Biochem. 270:2429–2435; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Grossniklaus, U.; Schneitz, K. The molecular and genetic bases of ovule and megagametophyte development. Semin. Cell Dev. Biol. 9:227–238; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, V.; Lamba, L. C.; Goel, J. P. Comparative study on the seed of two major pulses vis-à-vis their common adulterant. Plant Sci. 95:283–289; 1985.

    Google Scholar 

  • Hamilton, A. J.; Baulcombe, D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Hanada, K.; Hirano, H. Interation of a 43-kDa receptor-like protein with a 4-kDa hormone-like peptide in soybean. Biochemistry 43:12105–12112; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Hanada, K.; Nishiuchi, Y.; Hirano, H. Amino acid residues on the surface of soybean 4-kDa peptide involved in the interaction with its binding protein. Eur. J. Biochem. 270:2583–2592; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Hancock, R. E.; Lehrer, R. Cationic peptides: a new source of antibiotics. Trends Biotechnol. 16:82–88; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Harborne, J. B.: The Havonoids: Advances in research since 1980. New York: Chapman and Hall; 1988.

    Google Scholar 

  • Harris, H. B.; Burns, R. E. Influence of tannin, content on preharvest seed germination in sorghum. Agron. J. 62:835–836; 1970.

    Article  CAS  Google Scholar 

  • Harris, W. M. On the development of osteosclereids in seed coats of Pisum sativum L. New Phytol., 98:135–141; 1984.

    Article  Google Scholar 

  • Harrison, M. J. Molecular genetics of model legumes. Trends Plant Sci. 5:414–415; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Helenius, A.; Aebi, M. Intracellular functions of N-linked glycans. Science 291:2364–2369; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Henriksen, A.; Mirza, O.; Indiani, C.; Teilum, K.; Smulevich, G.; Welinder, K. G.; Gajhede, M. Structure of soybean seed coat peroxidase: a plant peroxidase with unusual stability and haem-apoprotein interactions. Protein Sci. 10:108–115; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Herman, E. M.; Helm, R. M.; Jung, R.; Kinney, A. J. Genetic modification removes an immunodominant allergen from soybean. Plant Physiol. 132:36–43; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Higgins, T. J. V.; Chandler, P. M.; Randall, P. J.; Spencer, D.; Beach, L. R.; Blagrove, R. J.; Kort, A. A.; Inglis, A. S. Gene structure, protein structure and regulation of the synthesis of a sulfur-rich protein in pea seeds. J. Biol. Chem. 261:11124–11130; 1986.

    PubMed  CAS  Google Scholar 

  • Hird, D. L.; Worrall, D.; Hodge, R.; Smartt, S.; Paul, W.; Scott, R. The anther-specific protein encoded by the Brassica napus and Arabidopsis thaliana A6 gene displays similarity to β-1,3-glucanases. Plant J. 4:1023–1033: 1993.

    Article  PubMed  CAS  Google Scholar 

  • Hood, E. E. Where, oh where has my protein gone? Trends Biotechnol. 22:53–55; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Hou, D.-X. Potential mechanisms of cancer chemoprevention by anthocyanins. Curr. Mol. Med. 3:149–159; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Hungria, M.; Phillips, D. A. Effects of a seed color mutation on rhizobial nod-gene-inducing flavonoids and nodulation in common bean. Mol. Plant-Microbe Interact. 6:418–422; 1993.

    CAS  Google Scholar 

  • Ilgoutz, S. C.; Knittel, N.; Lin, J. M.; Sterle, S.; Gayler, K. R. Transcription of genes for conglutin γ and a leginsulin-like protein in narrow-leafed lupin. Plant Mol. Biol. 34:613–627; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Irving, D. W. Seed structure and histochemistry of Prosopis velutina (Leguminosae). Bot. Gaz. 145:340–345; 1984.

    Article  Google Scholar 

  • Izaguirre, P.; Mérola, S.; Beyhaut, R. Seed ontogeny in Adesmia securigerifolia (Fabaceae-Adesmieae). Nord. J. Bot. 14:547–556; 1994.

    Google Scholar 

  • Jofuku, D. D.; den Boer, B. G. W.; Van Montagu, M.; Okamuro, J. K. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Jofuku, K. D.; Omidyar, P. K.; Gee, Z.; Okamuro, J. K. Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc. Natl Acad. Sci. USA 102:3117–3122; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, C. S.; Kolevski, B.; Smyth, D. R. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14:1359–1375; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Karakaya, S.; Kavas, A. Antimutagenic activities of some foods. J. Sci. Food Agric. 79:237–242; 1999.

    Article  CAS  Google Scholar 

  • Karssen, C. M.; Brinkhorst-van der Swan, D. L. C.; Breekland, A. E.; Koornneef, M. Induction of dormancy during seed development by endogenous of Arabidopsis thaliana (L.). Heynh. Planta 157:158–165; 1983.

    Article  CAS  Google Scholar 

  • Kauffmann, S.; Legrand, M.; Geoffroy, P.; Fritig, B. Biological function of ‘pathogenesis-related’ proteins: four PR proteins from tobacco have 1,3-β-glucanase activity. EMBO J. 6:3209–3212; 1987.

    PubMed  CAS  Google Scholar 

  • Keller, B. Structural cell wall proteins. Plant Physiol. 101:1127–1130; 1993.

    PubMed  CAS  Google Scholar 

  • Khanna, P.; Jain, S. C.; Panagariya, A.; Dixit, V. P. Hypoglycemic activity of polypeptide-p from a plant source. J. Nat. Prod. 44:648–655; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Kitamura, S.; Shikazono, N.; Tanaka, A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J. 37:104–114; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Kleis-San Francisco, S. M.; Tierney, M. L. Isolation and characterization of a proline-rich cell wall protein from soybean seedlings. Plant Physiol. 94:1897–1902; 1990.

    Article  CAS  Google Scholar 

  • Klucher, K. M.; Chow, H.; Reiser, L.; Fischer, R. L. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell 8:137–153; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Komatsu, S.; Hirano, H. Plant basic 7S globulin-like proteins have insulin and insulin-like growth factor binding activity. FEBS Lett. 294:210–212; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Koornneef, M. The complex syndrome of ttg mutants. Arabid. Inf. Serv. 18:45–51; 1981.

    Google Scholar 

  • Kuang, A.; Xiao, Y.; Musgrave, M. E. Cytochemical localization of reserves during seed development in Arabidopsis thaliana under spaceflight conditions. Ann. Bot. 78:343–351; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Kuo, T. M.; Lowel, C. A.; Smith, P. T. Changes in soluble carbohydrates and enzymatic activities in maturing soybean seed tissues. Plant Sci. 125:1–11; 1997.

    Article  CAS  Google Scholar 

  • Léon-Kloosterziel, K. M.; Keijzer, C. J.; Koornneef, M. A seed shape mutant of Arabidopsis that is affected in integument development. Plant Cell 6:385–392; 1994.

    Article  PubMed  Google Scholar 

  • Leubner-Metzger, G. Seed after-ripening and over-expression of class I β-1,3-glucanase confer maternal effects on tobacco testa rupture and dormancy release. Planta 215:959–968; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Leubner-Metzger, G. β-1,3-glucanase gene expression in low-hydrated seeds as a mechanism for dormancy release during tobacco after-ripening. Plant J. 41:133–145; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom, J. T.; Vodkin, L. O. A soybean cell wall protein, is affected by seed color genotype. Plant Cell 3:561–571; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Ma, F.; Cholewa, E.; Mohamed, T.; Petersen, C. A.; Gijzen, M. Cracks in the palisade cuticle of soybean seed coats correlate with their permeability to water. Ann. Bot. 94:213–228; 2004a.

    Article  PubMed  Google Scholar 

  • Ma, F.; Peterson, C. A.; Gijzen, M. Reassessment of the pits and antipits in soybean seeds. Can. J. Bot. 82:654–662; 2004b.

    Article  Google Scholar 

  • Maguire, T. L.; Grimmond, S.; Forrest, A.; Iturbe-Ormaetxe, I.; Meksem, K.; Gresshoff, P. Tissue-specific gene expression in soybean (Glycine max) detected by cDNA microarry analysis. J. Plant Physiol. 159:1361–1374; 2002.

    Article  Google Scholar 

  • Malik, K.; Wu, K.; Li, X.-Q.; Martin-Heller, T.; Hu, M.; Foster, E.; Tian, L.; Wang, C.; Ward, K.; Jordan, M.; Brown, D.; Gleddie, S.; Simmonds, D.; Zheng, S.; Simmonds, J.; Miki, B. A constitutive gene expression system derived from the tCUP cryptic promoter sequence. Theor. Appl. Genet. 105:505–514; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Manning, J. C.; van Staden, J. The functional differentiation of the testa in seed of Indigofera parvivlara (Leguminosae: Papilionoideae). Bot. Gaz. 148:23–34; 1987.

    Article  Google Scholar 

  • Marcus, A.; Greenberg, J.; Averyhart-Fullard, V. Repetitive proline-rich proteins in the extracellular matrix of the plant cell. Physiol. Plant. 81:273–279; 1991.

    Article  CAS  Google Scholar 

  • Marles, M. A. S.; Gruber, M. Y.; Scoles, G. J.; Muir, A. D. Pigmentation in the developing seed coat and seedling leaves of Brassica carinata is controlled at the dihydroflavonol reductase locus. Phytochemistry 62:663–672; 2003a.

    Article  PubMed  CAS  Google Scholar 

  • Marles, M. A. S.; Ray, H.; Gruber, M. Y. New perspectives on proanthocyanidin biochemistry and molecular regulation. Phytochemistry 64:367–383; 2003b.

    Article  PubMed  CAS  Google Scholar 

  • Martínez, C. J.; Loarca-Piña, G.; Ortíz, G. D. Antimutagenic activity of phenolic compounds, oligosaccharides and quinolozidinic alkaloids from Lupinus campestris seeds. Food Addit. Contam. 20:940–948. 2003.

    Article  PubMed  CAS  Google Scholar 

  • Matsui, K.; Hiratsu, K.; Koyama, T.; Tanaka, H.; Ohme-Takagi, M. A chimeric AtMYB23 repressor induces hairy roots, elongation of leaves and stems, and inhibition of the deposition of mucilage on seed coats in Arabidopsis. Plant Cell Physiol. 46:147–155; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Memelink, J.; Linthorst, H. J.; Schilperoort, R. A.; Hoge, J. H. Tobacco genes encoding acidic and basic isoforms of pathogenesis-related proteins display different experssion patterns. Plant Mol. Biol. 14:119–126; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Miklas, P. N.; Townsend, C. E.; Ladd, S. L. Seed coat anatomy and the scarification of cicer milkvetch seed. Crop Sci. 27:766–772; 1987.

    Article  Google Scholar 

  • Miller, S. S.; Bowman, L. A.; Gijzen, M.; Miki, B. L. A. Early development of the seed coate of soybean (Glycine max). Ann. Bot. 84:297–304; 1999.

    Article  Google Scholar 

  • Modrusan, Z.; Reiser, L.; Feldmann, K. A.; Fischer, R. L.; Haughn, G. W. Homeotic transformation of ovules into carpel-like structures in Arabidopsis. Plant Cell 6:333–349; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Moraes, R. A.; Sales, M. P.; Pinto, M. S. P.; Silva, L. B.; Oliveira, A. E. A.; Machado, O. L. T.; Fernandes, K. V. S.; Xavier-Filho, J. Lima bean (Phaseolus lunatus) seed coat phaseolin is detrimental to the cowpea weevil (Callosobruchus maculates). Braz. J. Med. Biol. Res. 33:191–198; 2000.

    PubMed  CAS  Google Scholar 

  • Nakajima, M.; Nakayama, A.; Xu, Z.-J.; Yamaguchi, I. Gibberellin induces α-amylase gene in seed coat of Ipomoea, nil immature seeds. Biosci. Biotechnol. Biochem. 68:631–637; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, T.; Yang, D.; Kalaiselvi, S.; Uematsu, Y.; Takahashi, R. Genetic analysis of net-like cracking in soybean coats. Euphytica 133:179–184; 2003.

    Article  CAS  Google Scholar 

  • Nakaune, S.; Yamada, K.; Kondo, M.; Kato, T.; Tabata, S.; Nishimura, M.; Hara-Nishimura, I. A vacuolar processing enzyme, δVPE, is involved in seed coat formation at the early stage of seed development. Plant Cell 17:876–887; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Ndakidemi, P. A.; Dakora, F. D. Legume seed flavonoids and nitrogenous metabolites as signals and protectants in early seedling development. Funct. Plant Biol. 30:729–745; 2003.

    Article  Google Scholar 

  • Nesi, N.; Debeaujon, I.; Jond, C.; Pelletier, G.; Caboche, M.; Lepiniec, L. The TT8 gene encodes a basix Helix-Loop-Helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12:1863–1878; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Nesi, N.; Debeaujon, I.; Jond, C.; Stewart, A. J.; Jenkins, G. I.; Caboche, M.; Lepiniec, L. The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. Plant Cell 14:2463–2479; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Nesi, N.; Jond, C.; Debeaujon, I.; Caboche, M.; Lepiniec, L. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13:2099–2114; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Nicholas, C. D.; Lindstrom, J. T.; Vodkin, L. O. Variation of proline rich cell wall proteins in soybean lines with anthocyanin mutations. Plant Mol. Biol. 21:145–156; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Nissum, M.; Schiodt, C.; Welinder, K. G. Reaction of soybean peroxidase and hydrogen peroxide pH 2.4–12.0, and veratryl alcohol at pH 2.4. Biochim. Biophys. Acta 1545:339–348; 2001.

    PubMed  CAS  Google Scholar 

  • Ohto, M.; Fischer R. L.; Goldberg, R. B.; Nakamura, K.; Harada, J. J. Control of seed mass by APETALA2. Proc. Natl Acad. Sci. USA 102:3123–3128; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa, T.; Bando, N.; Tsuji, H.; Okajima, H.; Nishikawa, K.; Sasaoka, K. Investigation of the IgE-binding proteins in soybean by immunobloting with the sera of the soybean-sensitive patients with atopic dermatitis. J. Nutr. Sci. Vitaminol. 37:555–565; 1991.

    PubMed  CAS  Google Scholar 

  • Ogawa, T.; Tsuji, H.; Bando, N.; Kitamura, K.; Zhu, Y. L.; Hirano, H.; Nishikawa, K. Identification of the soybean allergenic protein, Gly m Bd 30K, with the soybean seed 34-kDa oil-body-associated protein. Biosci. Biotechnol. 57:1030–1033; 1993.

    CAS  Google Scholar 

  • Oigiangbe, N. O.; Onigbinde, A. O. The association between some physico-chemical characteristics and susceptibility of cowpea (Vigna unguiculata (L.) Walp) to Callasobruchus maculates (F). J. Stored Prod. Res. 32:7–11; 1996.

    Article  CAS  Google Scholar 

  • Oliveira, A. E. A.; Gomes, V. M.; Sales, M. P.; Fernandes, K. V. S.; Carlini, C. R.; Xavier-Filho, J. The toxicity of Jack bean [Canavalia ensiformis (L.) DC.] canatoxin to plant pathogenic fungi. Rev. Brasil. Biol. 59:59–62; 1999a.

    Google Scholar 

  • Oliveira, A. E. A.; Ribeiro, E. S.; da Cunha, M.; Gomes, V. M.; Fernandes, K. V. S.; Xavier-Filho, J. Insulin accelerates seedling growth of Canavalia ensiformis (Jack bean). Plant Growth Regul. 43:57–62. 2004.

    Article  CAS  Google Scholar 

  • Oliveira, A. E. A.; Sales, M. P.; Machado, O. L. T.; Fernandes, K. V. S.; Xavier-Filho, J. The toxicity of Jack bean (Canavalia ensiformis) cotyledon and seed coat protein to the cowpea weevil (Callosobruchus maculatus) Entomol. Exp. Appl. 92:249–255; 1999b.

    Article  CAS  Google Scholar 

  • Oliveira, A. E. A.; Sassaki, G. L.; Iacomini, M.; da Cunha, M.; Gomes, V. M.; Fernandes, B. K. V. S.; Xavier-Filho, J. Isolation and characterization of a galactorhamnan polysaccharide from the seed coat of Canavalia ensiformis that is toxic to the cowpea weevil (Callosobruchus maculatus). Entomol. Exp. Appl. 101:225–231; 2001.

    Article  CAS  Google Scholar 

  • Olszewski, N.; Sun, T.-P.; Gubler, F. Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14:S61-S80; 2002.

    PubMed  CAS  Google Scholar 

  • Osusky, M.; Osuska, L.; Hancock, R. E.; Kay, W. W.; Misra, S. Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot. Transgenic Res. 13:181–190; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Paiva, N. L. An introduction to the biosynthesis of chemicals used in plant-microbe communication. J. Plant Growth Regul. 19:131–143; 2000.

    PubMed  CAS  Google Scholar 

  • Palmer, R. G.; Kilen, T. C. Qualitative genetics. In: Wilcox, J. R., ed. Soybeans: Improvement, production and uses, 2nd ed Madison, WI; American Society of Agronomy; 1987:135–209.

    Google Scholar 

  • Pandey, A. K.; Jha, S. S. Development and structure of seeds in some Genisteae (Papilionoideae-Leguminosae). Flora 181:415–424; 1988.

    Google Scholar 

  • Paria, N.; Deb, D. K.; Chattopadhyay, S. P. Seed-coat anatomy of some Indian leguminous taxa. J. Plant Anat. Morphol. 7:46–55; 1997.

    Google Scholar 

  • Patrick, J. W.; Offler, C. E. Compartmentation of transport and transport and transfer event in developing seeds. J. Exp. Bot. 52:551–564; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Penfield, S.; Meissner, R. C.; Shoue, D. A.; Carpita, N. C.; Bevan, M. W. MYB61 is required for mucilage deposition and extrusion in the Arabidopsis seed coat. Plant Cell 13:2777–2791; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Percy, J. D.; Philip, R.; Vodkin, L. O. A defective seed coat pattern (Net) is correlated with the post-transcriptional abundance of soluble proline-rich cell wall proteins. Plant Mol. Biol. 40:603–613; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Ragus, L. N. Role of water absorbing capacity in soybean germination and seedling vigour. Seed Sci. Technol. 15:285–296; 1987.

    Google Scholar 

  • Ray, S.; Golden, T.; Ray, A. Maternal effects of the short integument mutation on embryo development in Arabidopsis. Dev. Biol. 180:365–369; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Ray, A.; Robinson-Beers, K.; Ray, S.; Baker, S. C.; Lang, J. D.; Preuss, D.; Milligan, S. B.; Gasser, C. S. Arabidopsis floral homeotic gene BELL (BELI) controls ovule development through negative regulation of AGAMOUS gene (AG). Proc. Natl. Acad. Sci. USA 91:5761–5765; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Raz, V.; Bergervoet, J. H. W.; Koornneef, M. Sequential steps for developmental arrest in Arabidopsis seeds. Development 128:243–252; 2001.

    PubMed  CAS  Google Scholar 

  • Reiser, L.; Modrusan, Z.; Margossian, L.; Samach, A.; Ohad, N.; Haughn, G. W.; Fischer, R. L. The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell 83:735–742; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Robinson-Beers, K.; Pruitt, R. E.; Gasser, C. S. Ovule development in wild-type Arabidopsis and two female-sterile mutants. Plant Cell 4:1237–1249; 1992.

    Article  PubMed  Google Scholar 

  • Rochat, C.; Boutin, J. P. Metabolism of phloem-borne amino acids in maternal tissues of fruit of nodulated or nitrate-fed pea plants (Pisum sativum L.). J. Exp. Bot. 42:207–214; 1991.

    Article  CAS  Google Scholar 

  • Rolletschek, H.; Borisjuk, L.; Koschorreck, M.; Wobus, U.; Weber, H. Legume embryos develop in a hypoxic environment. J. Exp. Bot. 53:1099–1107; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Ross, J. A.; Kasum, C. M. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 22:19–34; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Sagasser, M.; Lu, G.-H.; Hahlbrock, K.; Weisshaar, B. A. thaliana TRANSPARENT TESTA1 is involved in seed coat development and defines the WIP subfamily of plant zinc finger proteins. Genes Dev. 16:138–149; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, H.; Medrano, L. J.; Meyerowitz, E. M. Role of SUPERMAN in maitaining Arabidopsis floral whorl boundaries. Nature 378:199–203; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Salunkhe, D. K.; Jadhav, S. J.; Kadam, S. S.; Chavan, J. K. Chemical, biochemical and biological significance of polyphenols in cereals and legumes. Crit. Rev. Food Sci. Nutr. 17:277–305; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Schiefthaler, U.; Balasubramanian, S.; Sieber, P.; Chevalier, D.; Wisman, E.; Schneitz, K. Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 96:11664–11669; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Shlumbaum, A.; Mauch, F.; Vögeli, U.; Boller, T. Plant chitinases are potent inhibitors of fungal growth. Nature 324:365–367; 1986.

    Article  Google Scholar 

  • Schneitz, K. The molecular and genetic control of ovule development. Curr. Opin. Plant Biol. 2:13–17; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Schneitz, K.; Hülskamp, M.; Pruitt, R. E. Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. Plant J. 7:731–749; 1995.

    Article  Google Scholar 

  • Schoenbohm, C.; Martens, S.; Eder, C.; Forkmann, G.; Weisshaar, B. Identification of the Arabidopsis thaliana flavonoid 3′-hydroxylase gene and functional expression of the encoded P450 enzyme. Biol. Chem. 381:749–753; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Schopfer, P.; Plachy, C.; Frahry, G. Release of reactive, oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol. 125:1591–1602; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Schuurmans, A. M. J.; van Dongen, J. T.; Rutjens, B. P. W.; Boonman, A.; Pieterse, C. M. J.; Borstlap, A. C. Members of the aquaporin family in the developing pea seed coat include representatives of the PIP, TIP, and NIP subfamilies. Plant Mol. Biol. 53:655–667; 2003.

    Article  Google Scholar 

  • Senda, M.; Jumonji, A.; Yumoto, S.; Ishikawa, R.; Harada, T.; Niizeki, M.; Akada, S. Analysis of the duplicated CHS1 gene related to the suppression of the seed coat pigmentation in yellow soybeans. Theor. Appl. Genet. 104:1086–1091; 2002a.

    Article  PubMed  CAS  Google Scholar 

  • Senda, M.; Kasai, A.; Yumoto, S.; Akada, S.; Ishikawa, R.; Harada, T.; Niizeki, M. Sequence divergence at chalcone synthase gene in pigmented seed coat soybean mutants of the Inhibitor locus. Genes Genet. Syst. 77:341–350; 2002b.

    Article  PubMed  CAS  Google Scholar 

  • Senda, M.; Masuta, C.; Ohnishi, S.; Goto, K.; Kasai, A.; Sano, T.; Hong, J.-S.; MacFarlane, S. Patterning of virus-infected Glycine max seed coat is associated with suppression of endogenous silencing of chalcone synthase genes. Plant Cell 16:807–818; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Serrato-Valenti, G.; DeVries, M.; Cornara, L. The hilar region in Leucaena leucocephala Lam. (De Wit) seed: structure, histochemistry and the role of the lens in germination. Ann. Bot. 75:569–574; 1995.

    Article  Google Scholar 

  • Sharma, N. K.; Sharma, K. C. Development and structure of seedcoat in Tephrosia Pers. (Leguminosae). Feddes Repert. 105:287–292; 1994.

    Google Scholar 

  • Shikazono, N.; Yokota, Y.; Kitamura, S.; Suzuki, C.; Watanabe, H.; Tano, S.; Tanaka, A. Mutation rate and novel tt mutants of Arabidopsis thaliana induced by carbon ions. Genetics 163:1449–1455; 2003.

    PubMed  CAS  Google Scholar 

  • Shimizu, T.; Akada, S.; Senda, M.; Ishikawa, R.; Harada, T.; Niiizeki, M.; Dube, S. K. Enhanced expression and differential inducibility of soybean chalcone synthase genes by supplemental UV-B in dark-grown seedlings. Plant. Mol. Biol. 39:785–795; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Shirley, B. W.; Hanley, S.; Goodman, H. M. Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations. Plant Cell 4:333–347; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Shirley, B. W.; Kubasek, W. L.; Storz, G.; Bruggemann, E.; Koornneef, M.; Ausubel, F. M.; Goodman, H. M. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J. 8:659–671; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker, R.; Keim, P.; Vodkin, L.; Erpelding, J.; Coryell, V.; Khann, A.; Bolla, B.; Marra, M.; Hillier, L.; Kucaba, T; Martin, J.; Beck, C.; Wylie, T.; Undrewood, K.; Steptoe, M.; Theising, B.; Allen, M.; Bowers, Y.; Person, B.; Swaller, T.; Gibbons, M.; Pape, D.; Harvey, N.; Schurk,R.; Ritter, E.; Kohn, S.; Shin, T.; Jackson, Y.; Cardenas, M.; McCann,R.; Waterston, R.; Wilson, R. Public Soybean EST Project. (Available at website: http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=10846676); 1999a.

  • Shoemaker, R.; Keim, P.; Vodkin, L., Erpelding, J; Coryell, V.; Khann, A.; Bolla, B.; Marra, M.; Hillier, L.; Kucaba, T.; Martin, J.; Beck, C.; Wylie, T.; Underwood, K.; Steptoe, M.; Theising, B.; Allen, M.; Bowers, Y.; Person, B.; Swaller, T.; Gibbons. M.; Pape, D; Harvey, N.; Schurk, R.; Ritter, E.; Kohn, S.; Shin, T.; Jackson, Y.; Cardenas, M.; McCann, R.; Waterston, R.; Wilson, R. Public Soybean EST Project. (Available at website: http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=7589170); 1999b.

  • Shoemaker, R.; Keim, P.; Vodkin, L.; Erpelding, J.; Coryell, V.; Khann, A.; Bolla, B.; Marra, M.; Hillier L.; Kucaba, T.; Martin, J.; Beck, C.; Wylie, T.; Underwood, K.; Steptoe, M.; Theising, B.; Allen, M.; Bowers, Y., Person, B.; Swaller, T.; Gibbons, M.; Pape, D.; Harvey, N.; Schurk, R.; Ritter, E.; Kohn, S.; Shin, T.; Jackson, Y.; Cardenas, M.; McCann, R.; Waterston, R. and Wilson, R. Public Soybean EST Project. (Available at website: http://www.ncbi.nlm.nih.gov./entrez/viewer.fcgi?db=nucleotide&val=14259925); 1999c.

  • Shoemaker, R.; Keim, P.; Vodkin, L.; Retzel, E.; Clifton, S. W.; Waterston R.; Smoller, D.; Coryell, V.; Khana, A.; Erpelding, J.; Gai, X.; Brendel, V.; Raph-Schmidt, C.; Shoop, E. G.; Vielweber, C. J.; Schmatz, M.; Pape, D.; Bowers, Y.; Theising, B.; Martin, J.; Dante, M.; Wylie, T.; Granger, C. A complication of soybean ESTs: generation and analysis. Genome 45:329–338; 2002.

    Article  PubMed  Google Scholar 

  • Showalter, A. M. Structure and function of plant cell wall proteins. Plant Cell 5:9–23; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Sieber, P.; Petrascheck, M.; Barberis, A.; Schneitz, K. Organ polarity in Arabidopsis NOZZLE physically interacts with members of the YABBY family. Plant Physiol. 135:2172–2185; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Silva, L.B.; Sales, M. P.; Oliveira, A. E. A.; Machado, O. L. T.; Fernandes, K. V. S.; Xavier-Filho, J. The seed coat of Phaseolus vulgaris interferes with the development of the cowpea weevil [Callosobruchus maculatus (F.) (Coleoptera: Bruchidae)]. Ann. Braz. Acad. Sci 76:57–65; 2004.

    CAS  Google Scholar 

  • Silva, L. B.; Santos, S. S. S.; Azevedo, C. R.; Cruz, M. A. L.; Venâncio, T. M.; Cavalcante, C. V. S.; Xavier-Filho, J. The leaves of green plants as well as a cyanobacterium, a red alga, and fungi contain insulin-like antigens. Braz. J. Med. Biol. Res. 35:297–303; 2002.

    PubMed  CAS  Google Scholar 

  • Simbaya, J.; Slominski, B. A.; Rakow, G.; Campbell, L. D.; Downey, R. K.; Bell, J. M. Quality characteristics of yellow-seeded Brassica seed meals: Protein, carbohydrates, and dietary fiber components. J. Agric. Food Chem. 43:2062–2066; 1995.

    Article  CAS  Google Scholar 

  • Simmons, C. R.; Litts, J. C.; Huang, N.; Rodriguez, R. L. Structure of a rice β-glucanase gene regulated by ethylene, cytokinin, wounding, salicylic acid and fungal elicitors. Plant Mol. Biol. 18:33–45; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Skinner, D. J.; Hill, T. A.; Gasser, C. S. Regulation of ovule development. Plant Cell 16:32–45; 2004.

    Article  Google Scholar 

  • Sornsathapornkul, P.; Owens, J. N. Zygotic embryo development in a tropical Acacia hybrid (Acacia mangium Willd × A. auriculformis A. Cunn. ex Benth.). Int. J. Plant. Sci. 160:445–458; 1999.

    Article  Google Scholar 

  • Souza, F. H. D. D.; Marcos-Filho, J. The seed coat as a modulator of seed-environment relationships in Fabaceae. Rev. Bras. Bot. 24:365–375; 2001.

    Article  Google Scholar 

  • Stacey, G.; Vodkin, L.; Parrott, W. A.; Shoemaker, R. C. National science foundation-sponsored workshop report. Draft plant for soybean genomics. Plant Physiol. 135:59–70; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Stavric, B. Antimutagens and anticarcinogens in foods. Food Chem. Toxicol. 32:79–90; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, M. C.; Li, J. T.; Wentz-Murtha P. E.; Trudeau, W. L.; Fernandez-Caldas, E.; Greife, A.; Rodrigo, M. A. J.; Morell, F.; Reed, C. E. Source of the aeroallergen of soybean dust: a low molecular mass glycopeptide from the soybean tela. J. Allergy Clin. Immunol. 87:783–788; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Tan, N.-H.; Rahim, Z. H. A.; Khor, H.-T.; Wong, K.-C. Winged bean (Psophocarpus tetragonolobus) tannin level, phytate content and hemagglutinating activity. J. Agric. Food Chem. 31:916–917; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Thibaud-Nissen, F.; Shealy, R. T.; Khanna, A.; Vodkin, L. O. Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol. 132:118–136; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, R. D.; Hueros, G.; Becker, H.-A.; Maitz, M. Development and functions of seed transfer cells. Plant Sci. 160:775–783; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Toda, K.; Yang, D.; Yamanaka, N.; Watanaba, S.; Harada, K.; Takahashi, R. A single-base deletion in soybean flavonoid 3′-hydroxylase gene is associated with gray pubescence color. Plant Mol. Biol. 50:187–196; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Todd, J. J.; Vodkin, L. O. Dupliations that suppress and deletions that restore expression from a chalcone synthase multigene family. Plant Cell 8:687–699; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson, K. L.; McHugh, S.; Labbe, H.; Grainger, J. L.; James, L. E.; Pomeroy, K. M.; Mullin, J. W.; Miller, S. S.; Dennis, D. T.; Miki, B. L. A. Evidence that the hexose-to-sucrose ratio does not control the switch to storage product accumulation in oilseeds: analysis of tobacco seed development and effects of overexpressing apoplastic invertase. J. Exp. Bot. 55:2291–2303; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Trivedi, B. S.; Gupta, M. T. Seed coat structure in some species of Atylosia phaseoleae cajaninae. Scan. Microscopy 1:1465–1474; 1987.

    Google Scholar 

  • Tuteja, J. H.; Clough, S. J.; Chan, W.-C.; Vodkin, L. O. Tissue-specific gene silencing mediated by a naturally occuring chalcone synthase gene cluster in Glycine max. Plant Cell 16:819–835; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Usadel, B.; Kuschinsky, A. M.; Rosso, M. G.; Eckerman, N.; Pauly, M. RHM2 is involved in mucilage pectin synthesis and is required for the development of the seed coat in Arabidopsis. Plant Physiol. 134:286–295; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Van Caeseele, L.; Mills, J. T.; Sumner, M.; Gillespie, R. Cytology of mucilage production in the seed coat of candle canola (Brassica campestris. Can. J. Bot. 59:292–300; 1981.

    Google Scholar 

  • Van Caeseele, L.; Mills, J. T.; Sumner, M.; Gillespie, R. Cytological study of palisade development in the seed coat of candle canola. Can. J. Bot. 60:2469–2475; 1982.

    Google Scholar 

  • VandenBosch, K. A.; Stacey, G. Summaries of legume genomics projects from around the globe. Community resources for crops and models. Plant Physiol. 131:840–865; 2003.

    Article  CAS  Google Scholar 

  • van Dongen, J. T.; Ammerlaan, A. M. H.; Wouterlood, M.; van Aelst, A. C.; Borstlap, A. C. Structure of the developing pea, seed coat and the post-phloem transport pathway of nutrients. Ann. Bot. 91:729–737; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Vaughan, J. G.; Whitehouse, J. M. Seed structure and the taxonomy of the Cruciferae. Bot. J. Linn. Soc. 64:383–409; 1971.

    Google Scholar 

  • Vanâncio, T. M.; Oliveira, A. E. A.; Silva, L. B.; Machado, O. L. T.; Fernandes, K. V. S.; Xavier-Filho, J. A protein with amino acid sequence homology to bovine insulin is present in the legume Vigna unguiculata (cowpea). Braz. J. Med. Biol. Res. 36:1167–1173; 2003.

    Google Scholar 

  • Villanueva, J. M.; Broadhvest, J.; Hauser, B. A.; Meister, R. J.; Schneitz, K.; Gasser, C. S. INNER NO OUTER regulates abaxial-adaxial patterning in Arabidopsis ovules. Genes Dev. 13:3160–3169; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Walker, A. R.; Davison, P. A.; Bolognesi-Winfield, A. C.; James, C. M.; Srinivasan, N.; Blundell, T. L.; Esch, J. J.; Marks, M. D.; Gray, J. C. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11:1337–1349; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Wan, L.; Xia, Q.; Qiu, X.; Selvaraj, G. Early stages of seed development in Brassica napus: a seed coat-specific cysteine proteinase associated with programmed cell death of the inner intergument. Plant J. 30:1–10; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C.-S.; Todd, J. J.; Vodkin, L. O. Chalcone synthase mRNA and activity are reduced in yellow soybean seed coats with dominant I alleles. Plant Physiol. 105:739–748; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H. L.; Grusak, M. A. Structure and development of Medicago truncatula pod wall and seed coat. Ann. Bot. 95:737–747; 2005.

    Article  PubMed  Google Scholar 

  • Wang, X.; Warkentin, T. D.; Briggs, C. J.; Oomah, B. D.; Campbell, C. G.; Woods, S. Total phenolics and condensed tannins in field pea (Pisum sativum L.) and grass pea (Lathyrus sativus L.). Euphytica 101:97–102; 1998.

    Article  CAS  Google Scholar 

  • Weber, H.; Borisjuk, L.; Heim, U.; Buchner, P.; Wobus, U. Seed coat associated invertases of fava bean control both unloading and storage functions: cloning of cDNAs and cell type-specific expression. Plant Cell 7:1835–1846; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Weber, H.; Borisjuk, L.; Wobus, U. Controlling seed development and seed size in Vicia faba: a role for seed coat-associated invertases and carbohydrate state. Plant J. 10:823–834; 1996.

    Article  CAS  Google Scholar 

  • Weber, H.; Borisjuk, L.; Wobus, U. Molecular physiology of legume seed development. Annu. Rev. Plant Biol. 56:253–279; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Weber, H.; Heim, U.; Golombek, S.; Borisjuk, L.; Manteuffel, R.; Wobus, U. Expression of a yeast-derived invertase in developing cotyledons of Vicia narbonensis alters the carbohydrate state and affects storage functions. Plant J. 16:163–172; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Weijers, D.; van Hamburg, J.-P.; van Rijn, E.; Hooykaas, P. J. J.; Offringa, R. Diphtheria toxin-mediated cell ablation reveals interregional communication during Arabidopsis seed development. Plant Physiol. 133:1882–1892; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Welinder, K. G. Superfamily of plant, fungal and bacterial peroxidases. Curr. Opin. Struct. Biol. 2:388–393; 1992.

    Article  CAS  Google Scholar 

  • Welinder, K. G.; Larsen, Y. B. Covalent structure of soybean coat peroxidase. Biochim. Biophys. Acta 1698:121–126; 2004.

    PubMed  CAS  Google Scholar 

  • Wester, T. L.; Burn, J.; Tan, W. L.; Skinner, D. J.; Martin-McCaffrey, L.; Moffat, B. A.; Haughn, G. W. Isolation and characterization of mutants defective in seed coat mucilage secretory cell development in Arabidopsis. Plant Physiol. 127:998–1011; 2001.

    Article  Google Scholar 

  • Western, T. L.; Haughn, G. W. BELL1 and AGAMOUS genes promote ovule identity in Arabidopsis thaliana. Plant J. 18:329–336; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Wester, T. L.; Skinner, D. J.; Haughn, G. W. Differentiation of mucilage secretory cells of the Arabidopsis seed coat. Plant Physiol. 122:345–355; 2000.

    Article  Google Scholar 

  • Western, T. L.; Young, D. S.; Dean, G. H.; Tan, W. L.; Samuels, A. L.; Haughn, G. W. MUCILAGE-MODIFIED4 encodes a putative pectin biosynthetic enzyme developmentally regulated by APETALA2 TRANSPARENT TESTA GLABRA1, and GLABRA2 in the Arabidopsis seed coat. Plant Physiol. 134:296–306; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Wilcox, J. R. Performance and use of seedcoat mutants in soybean. Crop Sci. 28:30–32; 1998.

    Article  Google Scholar 

  • Windsor, J. B.; Symonds, V. V.; Mendenhall, J.; Lloyd, A. M. Arabidopsis seed coat development: morphological differentiation of the outer integument. Plant J. 22:483–493; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Wingender, R.; Rohrig, H.; Horicke, C.; Wing, D.; Schell, J. Differential regulation of soybean chalcone synthase genes in plant defense, symbiosis and upon environmental stimuli. Mol. Gen. Genet. 218:315–322; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Winkel-Shirley, B. Flavonoid biosynthesis. A colourful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126:485–493; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Wisman, E.; Hartmann, U.; Sagasser, M.; Baumann, E.; Palme, K.; Hahlbrock, K. Kneck-out mutants from an En-1 mutagenized Arabidopsis thaliana population generate phenylpropanoid biosynthesis phenotypes. Proc. Natl. Acad. Sci. USA 95:12432–12437; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Wobus, U.; Weber, H. Sugars as signal molecules in plant seed development. Biol. Chem. 380:937–944; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, W. J.; Baker, F. L. Scanning electron microscopy of soybeans. Cereal Sci. Today 17:125–130; 1972.

    Google Scholar 

  • Wu, S.; Druka, A.; Horvath, H.; Kleinhofs, A.; Kannangara, C. G.; von Wettstein, D. Functional characterization of seed coat-specific members of the barley germin gene family. Plant Physiol. Biochem. 38:685–698; 2000.

    Article  CAS  Google Scholar 

  • Xavier-Filho, J.; Oliveira, A. E. A.; da Silva, L. B.; Azevedo, C. R.; Venâncio, T. M.; Machado, O. L. T.; Oliva, M. L.; Fernandes, K. V. S.; Xavier-Neto, J. Plant insulin or glucokinin: a conflicting issue. Bras. J. Plant Physiol. 15:67–78; 2003.

    CAS  Google Scholar 

  • Xie, D.-Y.; Sharma, S. B.; Paiva, N. L.; Ferreira, D.; Dixon, R. A. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396–399; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Xudong, Y.; Al-Babili, S.; Klöti, A.; Zhang, J.; Lucca, P.; Beyer, P.; Potrykus, I. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305; 2000.

    Article  Google Scholar 

  • Yaklich, R. W.; Barla-Szabo, G. Seed coat cracking in soybean. Crop Sci. 33:1016–1019; 1993.

    Article  Google Scholar 

  • Yaklich, R. W.; Vigil, E. L.; Erbe, E. F.; Wergin, W. P. The fine structure of aleurone cells in the soybean seed coat. Protoplasma 167:108–119; 1992.

    Article  Google Scholar 

  • Yamazaki, T.; Takaoka, M.; Katoh, E.; Hanada, K.; Sakita, M.; Sakata, K.; Nishiuchi, Y.; Hirano, H. A possible physiological function and the tertiary structure of a 4-kDa peptide in legumes. Eur. J. Biochem. 270:1269–1276; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Yeung, E. Adhesion of endosperm cells to the inner surface of the bean seed coat. J. Struct. Biol. 105:103–110; 1990.

    Article  Google Scholar 

  • Young, N. D.; Mudge, J.; Ellis, T. H. N. Legume genomics: more than peas in a pod. Curr. Opin. Plant Biol. 6:199–204; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, C.-L.; Wang, J.-B.; Liu, A.-L.; Wu, X.-M. Seed coat microsculpturing changes during seed development in diploid and amphidiploid Brassica species. Ann. Bot. 93:555–566; 2004.

    Article  PubMed  Google Scholar 

  • Zhang, F.; Gonzalez, A.; Zhao, M.; Payne, C. T.; Lloyd, A. A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130: 4859–4869; 2003.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian L. A. Miki.

Additional information

The authors have contributed equally and are considered first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moïse, J.A., Han, S., Gudynaitę-Savitch, L. et al. Seed coats: Structure, development, composition, and biotechnology. In Vitro Cell.Dev.Biol.-Plant 41, 620–644 (2005). https://doi.org/10.1079/IVP2005686

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2005686

Key words

Navigation