Skip to main content
Log in

Waviness and Agglomeration Affecting on Elastic–Plastic Modulus of CNT Reinforced Composites

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The nanocomposites reinforced by carbon nanotubes (CNTs) exhibit great advantages in many fields. Many scholars focused on evaluating elastic properties of nanocomposites. There are somewhat disagreements between theoretical and experimental results. The waviness of the nanotubes is considered as one important factor affecting on the effective elastic modulus of nanocmposites. The present paper aims to develop a new model to replace the wavy carbon nanotubes with “effective fiber”. With the help of “effective fiber”, the effective modulus of nanocomposites with randomly oriented tubes can be predicted based on the micromechanics. In this study, the Mori-Tanaka effective-field method is modified, and the analytical expressions are derived for the effective elastic modulus of carbon nanotube-reinforced composites. The effects of waviness and agglomeration on the effective modulus are also analyzed. It is shown that they can reduce the stiffness of carbon nanotubes, significantly. Moreover, the effective elastic modulus of nanocomposites is very sensitive to the waviness and agglomeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. L.V. Radushkevich and V.M. Lukyanovich, “The structure of carbon forming in thermal decomposition of carbon monoxide on an iron catalyst,” Rus. J. Phys. Chem. 26, 88–95 (1952).

    Google Scholar 

  2. L. Ci and J. Bai, “The reinforcement role of carbon nanotubes in epoxy composites with different matrix stiffness,” Compos. Sci. Technol. 66 (3), 599–603 (2006). https://doi.org/10.1016/j.compscitech.2005.05.020

    Article  Google Scholar 

  3. A. G. Khakimov, “To the static stability of the cross-sectional shape of a pipeline, cylindrical shell, carbon nanotube,” Mech. Solids 58, 78–83 (2023). https://doi.org/10.3103/S0025654422600520

    Article  ADS  Google Scholar 

  4. M. Dogan, M. Turan, P. T. Beyli, et al., “Thermal and kinetic properties of poly(vinylacetate)/modified MWCNT nanocomposites,” Fullerenes, Nanotubes Carbon Nanostruct. 29 (6), 475–485 (2021). https://doi.org/10.1080/1536383X.2020.1860945

    Article  ADS  Google Scholar 

  5. A. N. Vlasov, D. B. Volkov-Bogorodskii, and Yu. V. Kornev, “influence of carbon additives on mechanical characteristics of an epoxy binder,” Mech. Solids 55 (3), 377–386 (2020). https://doi.org/10.3103/S0025654420030176

    Article  ADS  Google Scholar 

  6. S. P. Chitriv, A. K. Chaudhary, S. R. Yellumahanti, et al., “Functionalization of unzipped multi-walled carbon nanotube oxides with l-tyrosine for the adsorption of methylene blue,” Fullerenes, Nanotubes Carbon Nanostruct. 30 (12), 1199–1206 (2022). https://doi.org/10.1080/1536383X.2022.2084080

    Article  ADS  Google Scholar 

  7. E. V. Lobiak, V. R. Kuznetsova, E. Flahaut, et al., “Effect of Co-Mo catalyst preparation and CH4/H2 flow on carbon nanotube synthesis,” Fullerenes, Nanotubes Carbon Nanostruct. 28 (9), 707–715 (2020). https://doi.org/10.1080/1536383X.2020.1749051

    Article  ADS  Google Scholar 

  8. G. M. Odegard, T. S. Gates, K. E. Wise, et al., “Constitutive modeling of nanotube reinforced polymer composites,” Compos. Sci. Technol. 63, 1671–87 (2003).

    Article  Google Scholar 

  9. E. Shady and Y. Gowayed, “Effect of nanotube geometry on the elastic properties of nanocomposites,” Compos. Sci. Technol. 70, 1476–81 (2010). https://doi.org/10.1016/j.compscitech.2010.04.027

    Article  Google Scholar 

  10. D. L. Shi, X. Q. Feng, Y. G. Y. Huang, et al., “The Effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites,” J. Eng. Mater. Tech. 126 (3), 250–257 (2004). https://doi.org/10.1115/1.1751182

    Article  Google Scholar 

  11. L. H. Shao, R. Y. Luo, S. L. Bai, et al., “Prediction of effective moduli of carbon nanotube reinforced composites with waviness and debonding,” Compos. Struct. 87, 274–81 (2009). https://doi.org/10.1016/j.compstruct.2008.02.011

    Article  Google Scholar 

  12. G. I. Giannopoulos, S. K. Georgantzinos, and N. K. Anifantis, “A semi-continuum finite element approach to evaluate the Young’s modulus of single-walled carbon nanotube reinforced composites,” Compos. Part B 41 (8), 594–601 (2010). https://doi.org/10.1016/j.compositesb.2010.09.023

    Article  Google Scholar 

  13. I. E. Afrooz, A. Chsner, and M. Rahmandoust, “Effects of the carbon nanotube distribution on the macroscopic stiffness of composite materials,” Comput. Mater. Sci. 51, 422–429 (2012). https://doi.org/10.1016/j.commatsci.2011.08.003

    Article  Google Scholar 

  14. D. Qian, E. C. Dickeya, R. Andrews, et al., “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites,” Appl. Phys. Lett. 76 (20), 2868–2870 (2000). https://doi.org/10.1063/1.126500

    Article  ADS  Google Scholar 

  15. F. T. Fisher, R. D. Bradshaw, and L. C. Brinson, “Fiber waviness in nanotube-reinforced polymer composites: I. Modulus predictions using effective nanotube properties,” Compos. Sci. Technol. 63 (11), 1689–1703 (2003). https://doi.org/10.1016/S0266-3538(03)00069-1

    Article  Google Scholar 

  16. R. D. Bradshaw, F. T. Fisher, and L.C. Brinson, “Fiber waviness in nanotube-reinforced polymer composites: II. Modeling via numerical approximation of the dilute strain concentration tensor,” Compos. Sci. Technol. 63 (11), 1705–1722 (2003). https://doi.org/10.1016/S0266-3538(03)00070-8

    Article  Google Scholar 

  17. P. K. Mallick, Fiber-Reinforced Composites: Materials, Manufacturing, and Design (M. Dekker, New York, 1988).

    Google Scholar 

  18. M. Hosseini, M. Makkiabadi, and R. Bahaadini, “Exact solution for dynamic deflection of fluid-conveying nanotubes flexibly restrained at the ends by means of Green’s function method,” Mech. Solids 57 (5), 1157–1172 (2022). https://doi.org/10.3103/S0025654422050077

    Article  ADS  Google Scholar 

  19. J. W. Ning, J. J. Zhang, Y. B. Pan, et al., “Fabrication and mechanical properties of SiO2 matrix composites reinforced by carbon nanotube,” Mater. Sci. Eng. A 357, 392–396 (2003). https://doi.org/10.1016/S0921-5093(03)00256-9

    Article  Google Scholar 

  20. T.W. Chou and K. Takahashi, “Non-linear elastic behavior of flexible fibre composites,” Compos. 18, 25–34 (1987). https://doi.org/10.1016/0010-4361(87)90004-8

    Article  Google Scholar 

  21. C. M. Kuo, K. Takahashi, and T.W. Chou, “Effect of fiber waviness on the nonlinear elastic behavior of flexible composites,” J. Compos. Mater. 22, 1004–25 (1988). https://doi.org/10.1177/002199838802201101

    Article  ADS  Google Scholar 

  22. G. L. Shen and G. K. Hu, Mechanics of Composite Materials (Edu. Press, China, 2010).

  23. R. Andrews, D. Jacques, M. Minot, et al., “Fabrication of carbon multiwalled nanotube/polymer composites by shear mixing,” Macromolec. Mater. Eng. 287 (6), 395 (2002). https://doi.org/10.1002/1439-2054(20020601)287:6%3C395::AID-MAME395%3E3.0.CO;2-S

    Article  Google Scholar 

  24. I. Alig, P. Pötschke, and D. Lellinger, “Establishment, morphology and properties of carbon nanotube networks in polymer melts,” Polymer 53, 4–28 (2012). https://doi.org/10.1016/j.polymer.2011.10.063

    Article  Google Scholar 

  25. H. Hedayati and B. Sobhani Aragh, “Influence of graded agglomerated CNTs on vibration of CNT-reinforced annular sectorial plates resting on Pasternak foundation,” Appl. Math. Comput. 218, 8715–8735 (2012). https://doi.org/10.1016/j.amc.2012.01.080

    Article  MathSciNet  Google Scholar 

  26. R. Hill, “A self-consistent mechanics of composite materials,” J. Mech. Phys. Solids 13, 213–222 (1965).

    Article  ADS  Google Scholar 

  27. M. S. P. Shaffer and A. H. Windle, “Fabrication and characterization of carbon nanotube/Poly (vinyl alcohol) composites,” Adv. Mater. 11, 937–941 (1999). https://doi.org/10.1002/(SICI)1521-4095(199908)11:11%3C937::AID-ADMA937%3E3.0.CO;2-9

    Article  Google Scholar 

  28. B. Vigolo, A. Penicaud, C. Couloun, et al., “Macroscopic fibers and ribbons of oriented carbon nanotubes,” Science 290, 1331–1334 (2000). https://doi.org/10.1126/science.290.5495.1331

    Article  ADS  Google Scholar 

  29. J. Wuite and S. Adali, “Deflection and stress behaviour of nanocomposite reinforced beams using a multiscale analysis,” Compos. Struct. 71, 388–396 (2005). https://doi.org/10.1016/j.compstruct.2005.09.011

    Article  Google Scholar 

  30. F. Otero, X. Martínez, and S. Oller, “Study and prediction of the mechanical performance of a nanotube-reinforced composite,” Compos. Struct. 94 (9), 2920–2930 (2012). https://doi.org/10.1016/j.compstruct.2012.04.001

    Article  Google Scholar 

  31. J. James, H. Beaudoin, L. Dramé, et al., “Formation and properties of C-S-H–PEG nano-structures,” Mater. Struct. 42 (7), 1003–1014 (2009). https://doi.org/10.1617/s11527-008-9439-x

    Article  Google Scholar 

  32. M. Gao, L. Bian, and X. Liang, “Analysis for thermal properties and some influence parameters on carbon nanotubes by an energy method,” Appl. Math. Modell. 89, 73–88 (2021). https://doi.org/10.1016/j.apm.2020.07.041

    Article  MathSciNet  Google Scholar 

  33. A. Bagheri, T. Parhizkar, H. Madani, et al., “The influence of different preparation methods on the aggregation status of pyrogenic nanosilicas used in concrete,” Mater. Struct. 46 (1–2), 135–143 (2013). https://doi.org/10.1617/s11527-012-9889-z

Download references

Funding

This study was funded by the Science Research Foundation of Hebei Advanced Institutes (ZD2017075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lichun Bian.

Ethics declarations

The authors declare no conflicts of interest associated with this manuscript submitted.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Z., Cheng, Y. & Bian, L. Waviness and Agglomeration Affecting on Elastic–Plastic Modulus of CNT Reinforced Composites. Mech. Solids 58, 3302–3314 (2023). https://doi.org/10.3103/S0025654423601246

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654423601246

Keywords:

Navigation