Skip to main content
Log in

Studies of Degradation Silicon Heterojunction Solar Cells by 1 MeV Electrons Irradiation

  • SOLAR ENGINEERING MATERIALS SCIENCE
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

This article attempts to assess the radiation resistance of heterostructure silicon solar cells to the effects of 1 MeV electrons and discusses their prospects for power supply of the global low-orbit satellite communication system. The data obtained from this study allow us to identify the most promising types of heterostructure silicon solar cells for use in low-orbit spacecraft. These are n-α-Si:H-(p)c-Si:Ga-p-α-Si:H and n-µc-Si:H-(p)c-Si:Ga-p-α-Si:H solar cells. The degradation in efficiency of these structures was less than 30% by 1 × 1015 cm–2 fluence of 1 MeV electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Yamaguchi, M., Lee, K., Araki, K., Kojima, N., Okuno, Y., and Imaizumi, M., Analysis for radiation degradation of advanced Si space solar cells, Conference Record of the IEEE Photovoltaic Specialists Conference, 2019, pp. 2377–2380. https://doi.org/10.1109/PVSC40753.2019.8981219

    Book  Google Scholar 

  2. Masuko, K., Shigematsu, M., Hashiguchi, T., Fujishima, D., Kai, M., Yoshimura, N., Yamaguchi, T., Ichihashi, Y., Mishima, T., Matsubara, N., Yamanishi, T., Takahama, T., Taguchi, M., Maruyama, E., and Okamoto, S., Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell, IEEE J. Photovoltaics, 2014, vol. 4, no. 6, pp. 1433–1435. https://doi.org/10.1109/JPHOTOV.2014.2352151

    Article  Google Scholar 

  3. Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., Uto, T., Adachi, D., Kanematsu, M., Uzu, H., and Yamamoto, K., Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nat. Energy, vol. 2, no. 5, p. 17032. https://doi.org/10.1038/nenergy.2017.32

  4. Abramov, A.S., Andronikov, D.A., Abolmasov, S.N., and Terukov, E.I., High-Efficient Low-Cost Photovoltaics, Silicon Heterojunction Technology: A Key to High Efficiency Solar Cells at Low Cost, Springer Series in Optical Sciences, Cham: Springer, 2nd ed., 2020, ch. 7, pp. 113–132. https://doi.org/10.1007/978-3-030-22864-4_7

  5. Jay, F., Muñoz, D., Desrues, T., Pihan, E., Amaralde-Oliveira, V., Enjalbert, N., and Jouini, A., Advanced process for n-type mono-like silicon a-Si:H/c-Si heterojunction solar cells with 21.5% efficiency, Sol. Energy Mater. Sol. Cells, 2014, vol. 130, pp. 690–695. https://doi.org/10.1016/j.solmat.2014.02.025

    Article  CAS  Google Scholar 

  6. De Wolf, S., Descoeudres, A., Holman, Z.C., and Ballif, C., High-efficiency silicon heterojunction solar cells: A review, Green, 2012, vol. 2, pp. 7–24. https://doi.org/10.1515/green-2011-0018

    Article  CAS  Google Scholar 

  7. Fuhs, W., Korte, L., and Schmidt, M., Heterojunctions of hydrogenated amorphous silicon and monocrystalline silicon, J. Optoelectron. Adv. Mater., 2006, vol. 8, no. 6, pp. 1989–1995. https://www.helmholtz-berlin.de/media/media/spezial/people/korte/publications/6fuhs.pdf.

    CAS  Google Scholar 

  8. Kalinovskii, V.S., Terukov, E.I., Kontrosh, E.V., Verbitskii, V.N., and Titov, A.S., Radiation resistance of a-Si:H/Si Heterojunction solar cells with a thin i-a-Si:H inner layer, Tech. Phys. Lett., 2018, vol. 44, no. 9, pp. 801–803. https://doi.org/10.1134/S1063785018090067

    Article  ADS  CAS  Google Scholar 

  9. Luque, A. and Hegedus, S., Handbook of Photovoltaic Science and Engineering, England: John Wiley and Sons, 2003, p. 1138. https://doi.org/10.1002/0470014008

    Book  Google Scholar 

  10. Ataboev, O.K., Terukov, E.I., Shelopin, G.G., and Kabulov, R.R., Wet chemical treatment of monocrystalline silicon wafer surfaces, Appl. Sol. Energy, 2021, vol. 57, no. 5, pp. 363–369. https://doi.org/10.3103/S0003701X21050042

    Article  Google Scholar 

  11. Terukov, E., Kosarev, A., Abramov, A., and Malchukova, E., From 11% thin film to 23% heterojunction technology (HJT) PV cell: Research, development and implementation related 1600 × 1000 mm2 PV modules in industrial production, in Solar Panels and Photovoltaic Materials, Beddiaf Zaidi, Ed., InTech Open, 2018, ch. 5, p. 158. ISBN: 978-953-51-6173-8. https://doi.org/10.5772/intechopen.72061

    Book  Google Scholar 

  12. Andreev, V.M., Evstropov, V.V., Kalinovsky, V.S., Lantratov, V.M., and Khvostikov, V.P., Current flow and potential efficiency of solar cells based on GaAs and GaSb pn junctions, Semiconductors, 2009, vol. 43, no. 5, pp. 644-651. https://doi.org/10.1134/S1063782609050200

    Article  ADS  CAS  Google Scholar 

  13. Andreev, A.A., Andreev, V.M., Kalinovsky, V.S., Pokrovsky, P.V., and Terukov, E.I., Evaluation of the conversion efficiency of thin-film single-junction (a‑Si:H) and tandem (µc-Si:H + a-Si:H) solar cells by analysis of the experimental dark and load current–voltage (I–V) characteristics, Semiconductors, 2012, vol. 46, no. 7, pp. 929–936. https://doi.org/10.1134/S1063782612070044

    Article  ADS  CAS  Google Scholar 

  14. Kochergin, A.V., Panaiotti, I.E., Terukov, E.I., and Ataboev, O.K., Analysis of the dependence of the maximum power of silicon heterojunction solar cells on the parameters of the crystalline substrate, Appl. Sol. Energy, 2022, vol. 58, no. 3, pp. 330–333. https://doi.org/10.3103/S0003701X22030082

    Article  Google Scholar 

  15. Bothe, K. and Schmidt, J., Electronically activated boron-oxygen-related recombination centers in crystalline silicon, J. Appl. Phys., 2006, vol. 99, p. 01371. https://doi.org/10.1063/1.2140584

    Article  CAS  Google Scholar 

  16. Chen, D., Kim, M., Shi, J., Vicari Stefani, B., Yu, Z.(J.), Liu, S., Einhaus, R., Wenham, S., Holman, Z., and Hallam, B., Defect engineering of p-type silicon heterojunction solar cells fabricated using commercial-grade low-lifetime silicon wafers, Prog. Photovoltaics Res. Appl., 2019, vol. 29, no. 11, pp. 1165–1179. https://doi.org/10.1002/pip.3230

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the employees of the Ioffe Institute, Russian Academy of Sciences and the Saint Petersburg Electrotechnical University ETU-LETI for valuable advice when discussing the results of scientific research.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Kalinovskii.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinovskii, V.S., Terukov, E.I., Abolmasov, S.N. et al. Studies of Degradation Silicon Heterojunction Solar Cells by 1 MeV Electrons Irradiation. Appl. Sol. Energy 59, 604–611 (2023). https://doi.org/10.3103/S0003701X23600984

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X23600984

Keywords:

Navigation