Skip to main content
Log in

Cigs flexible nano solar cell by inert argon gas condensation

  • Heliotechnical Materials Science
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

The Cu(In0.7Ga0.3)Se2 nano solar cell pn junction structure consist of six layers of Al/CIGS/nano-CIGS/CdS/ITO/PET with thicknesses about 200, 500, 70, 100, 150 nm and 170 um were deposited by thermal evaporation technique at vacuum pressure 2 × 10–5 mbar respectively. where the ITO/PET conductive flexible substrate with sheet resistance 15 Ohms per sq. The X-ray diffraction analysis showed that as-deposited thin films CIGS and CdS are polycrystalline where optical energy gap and carrier concentration are found that 1.15 and 2.38 eV with p = 3.58 × 1010 cm–3 and n = 3.11 × 1013 cm–3 respectively. CIGS nano solar cell thin films are deposited on CdS/ITO/PET with assistance of inlet Argon gas vacuum pressure at 1, 5, 20 mbar by thermal evaporation technique at room temperature by using Inert gas condensation (IGC) is the method by which one can deposit films with high purity as deposition is done in low vacuum. The high magnification SEM image of CIGS nano-structures synthesized at 20 mbar revealed that the particles have exact spherical shape with sizes ranged from few nanometers to hundreds nanometers due to agglomeration effect. It was found that the grain size and the root mean square of surface roughness increases as Argon gas pressure increase. Therefore the structure of CIGS thin films has been changed from polycrystalline to nanostructure and have been found with increase Argon gas vacuum pressure from 1mbar to 5 mbar and then 20 mbar will increase grain size at 2θ = 32° from 15.9, 18.9 and 25.7 nm with decrease optical energy gap from 1.54, 1.44 and 1.26 eV respectively. The results showed the efficiency increase from 1.37% of CIGS/CdS to 2.01% of CIGS nano thin films of solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Javed, A., Turk. J. Phys., 2007, vol. 31, pp. 287–294.

    Google Scholar 

  2. Lauwaert, J., Puyvelde, L.V., Lauwaert, J., et al., Solar En. Mater. Solar Cells, 2013, vol. 112, pp. 78–83.

    Article  Google Scholar 

  3. Park, S.U., Sharma, R., Ashok, K., et al., J. Crystal Growth, 2012, vol. 359, pp. 1–10.

    Article  Google Scholar 

  4. Mustafa, F.I., Gupta, Sh., Goyal, N., and Tripathi, S.K., Phys. Status Solidi C, 2009, vol. 6, no. S1, pp. 135–138.

    Article  Google Scholar 

  5. Harrison, M.T., Kershaw, S.V., Burt, M.G., et al., Pure Appl. Chem., 2000, vol. 72, p. 295.

    Article  Google Scholar 

  6. Zhang, F., Krishnaswamy, S., and Lilley, C.M., Ultrasonics, 2006, vol. 45, p. 66.

    Article  Google Scholar 

  7. Wu, J., Li, P., Hao, S., Yang, H., and Lan, Z., El. Chim. Acta, 2007, vol. 52, p. 5334.

    Article  Google Scholar 

  8. Hazra, R.K., Ghosh, M., and Bhattacharyya, S.P., Chem. Phys., 2007, vol. 333, p. 18.

    Article  Google Scholar 

  9. Kovalevskij, V. and Gulbinas, V., Acta Physica Polonica A, 2005, vol. 107, p. 351.

    Article  Google Scholar 

  10. Lyubin, V.M., Klebanov, M., Sfez, B., and Ashkinadze, B., Mater. Lett., 2004, vol. 58, p. 1706.

    Article  Google Scholar 

  11. Efros, A.L. and Efros, A.L., Sov. Phys. Semicond., 1982, vol. 16, p. 772.

    Google Scholar 

  12. Halperin, W.P., Rew. Mod. Phys., 1986, vol. 58, p. 533.

    Article  Google Scholar 

  13. Alivisatos, A.P., Science, 1996, vol. 271, p. 933.

    Article  Google Scholar 

  14. Freitas, J.C.C., Nunes, E., Passamani, E.C., et al., Acta Materialia, 2006, vol. 54, p. 5095.

    Article  Google Scholar 

  15. Wang, X.W., Fei, G.T., Zheng, K., et al., Appl. Phys. Lett., 2006, vol. 88, p. 173114.

    Article  Google Scholar 

  16. Nanda, K.K., Chem. Phys. Lett., 2006, vol. 419, p. 195.

    Article  Google Scholar 

  17. Li, M. and Li, J.C., Mater. Lett., 2006, vol. 60, p. 2526.

    Article  Google Scholar 

  18. Gleiter, H., Prog. Mater. Sci., 1989, vol. 33, p. 223.

    Article  Google Scholar 

  19. Uyeda, R., Prog. Mater. Sci., 1991, vol. 35, p. 1.

    Article  Google Scholar 

  20. Yatsuya, S., Kasukabe, S., and Uyeda, R., Jpn. J. Appl. Phys., 1973, vol. 12, p. 1675.

    Article  Google Scholar 

  21. Granqvist, C.G. and Buhrman, R.A., J. Appl. Phys., 1976, vol. 47, p. 2200.

    Article  Google Scholar 

  22. Tholen, A.R., Acta Metallurgica, 1979, vol. 27, p. 1765.

    Article  Google Scholar 

  23. Massiot, I., Vandamme, N., Bardou, N., et al., ACS Photonics, 2014, vol. 1, no. 9, pp. 878–884.

    Article  Google Scholar 

  24. Jackson, P., Hariskos, D., Wuerz, R., et al., Phys. Status Solidi RRL, 2015, vol. 9, pp. 28–31.

    Article  Google Scholar 

  25. Best Research Cell Efficiencies. http://www.nrel. gov/ncpv/images/effi-ciency_chart.jpg.

  26. Chirilă, A., Reinhard, P., Pianezzi, F., et al., Nature Mater., 2013, vol. 12, p. 1107.

    Article  Google Scholar 

  27. Pianezzi, F., Reinhard, P., Chirilă, A., et al., Phys. Chem. Chem. Phys., 2014, vol. 16, p. 8843.

    Article  Google Scholar 

  28. Pianezzi, F., Chirilá, A., Blösch, P., et al., Prog. Photovolt: Res. Appl., 2012, vol. 20, p. 253.

    Article  Google Scholar 

  29. Solar Frontier HP.http://www.solarfrontier.com/eng/news/2015/C046576.html/.

  30. Minemoto, T., Abe, Y., Anegawa, T., et al., Jpn. J. Appl. Phys., 2010, vol. 49, p. 04DP06.

    Google Scholar 

  31. Caballero, R., Kaufmann, C.A., Eisenbarth, T., et al., Photovolt: Res. Appl., 2011, vol. 19, p. 547.

    Article  Google Scholar 

  32. Wuerz, R., Eicke, A., Kessler, F., and Pianezzi, F., Sol. Energy Mater. Sol. Cells, 2014, vol. 130, p. 107.

    Article  Google Scholar 

  33. Wuerz, R., Eicke, A., Kessler, F., et al., Thin Solid Films, 2011, vol. 519, p. 7268.

    Article  Google Scholar 

  34. Satoh, T., Hashimoto, Y., Shimakawa, S., et al., Sol. Energy. Sol. Cells, 2003, vol. 75, p. 65.

    Article  Google Scholar 

  35. Yogioka, T. and Nakada, T., Appl. Phys. Express., 2009, vol. 2, p. 072201.

    Article  Google Scholar 

  36. Herz, K., Kessler, F., Wächter, R., et al., Thin Solid Films, 2002, vol. 403–404, p. 384.

    Article  Google Scholar 

  37. Kapur, V.K., Bansal, A., Le, P., and Asensio, O.I., Thin Solid Films, 2003, vol. 431-432, p. 53.

    Article  Google Scholar 

  38. Ishizuka, S., Yamada, A., Matsubara, K., et al., Curr. Appl. Phys., 2010, vol. 10, p. S154.

    Article  Google Scholar 

  39. Ishizuka, S., Hommoto, H., Kido, N., et al., Appl. Phys. Express., 2008, vol. 1, p. 092303.

    Article  Google Scholar 

  40. Grzeta-Plenkovic, B., Popovic, S., Celustka, B., and Santic, B., J. Appl. Cryst., 1980, vol. 13, pp. 311–315.

    Article  Google Scholar 

  41. Birkmire, R.W. and Eser, E., Ann. Rev. Mater. Sci., 1997, vol. 27, p. 625.

    Article  Google Scholar 

  42. Sze, S.M. and Kwok, K.N., Physics of Semiconductor Devices, 3rd Ed., John Wiley & Sons, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falah I. Mustafa.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, F.I., Abdsalam, Z. & Jabbar, M.A. Cigs flexible nano solar cell by inert argon gas condensation. Appl. Sol. Energy 53, 167–172 (2017). https://doi.org/10.3103/S0003701X17020116

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X17020116

Navigation