Skip to main content
Log in

Clinical Pharmacokinetics of Anti-Parkinsonian Drugs

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Of the neurological disorders, none can claim a battery of therapeutic agents based upon as rational a pharmacology as can Parkinson’s disease. In this review, the clinical pharmacokinetics of the major classes of anti-Parkinsonian drugs is discussed. Although they are the oldest drugs in the anti-Parkinsonian armamentarium, little pharmacokinetic data are available regarding the anticholinergic and antihistaminic agents. Based on elimination half-lives of 10 to 18 hours, most could probably be effectively given on a twice-daily schedule. Amantadine is unique among anti-Parkinsonian agents both in lacking a clearly defined mechanism of action and in being eliminated from the body exclusively by renal excretion of unchanged drug. Thus the normal decline of renal function in the elderly Parkinsonian population becomes an important factor in avoiding potential drug toxicity. The pharmacokinetics and pharmacodynamics of levodopa are complex. Since it is an amino acid, it follows metabolic pathways and must compete for absorption and brain uptake with a number of large neutral amino acids. It has a short elimination half-life and, as Parkinson’s disease progresses, the brain loses its capacity to store the drug and becomes dependent in a moment-to-moment fashion on plasma levodopa concentrations, creating therapeutic response fluctuations in over 50% of patients. Pharmacokinetic considerations in the management of these response fluctuations are discussed. The newest class of anti- Parkinsonian agents are the direct acting dopamine receptor agonists. These drugs, all derivatives of ergot, have more prolonged durations of anti-Parkinsonian action than levodopa. However, other than bromocriptine, clinical experience with members of this class of drugs is still limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abernethy DR, Greenblatt DJ. Diphenhydramine determination in human plasma by gas-liquid chromatography using nitrogen-phosphorus detection: application to single low-dose pharmacokinetic studies. Journal of Pharmaceutical Sciences 72: 941–943, 1983

    Article  PubMed  CAS  Google Scholar 

  • Abrams WB, Coutinho CB, Leon AS, Spiegel HE. Absorption and metabolism of levodopa. Journal of the American Medical Association 218: 1912–1914, 1971

    Article  PubMed  CAS  Google Scholar 

  • Adibi SA, Gray SJ. Intestinal absorption of essential amino acids in man. Gastroenterology 52: 837–845, 1967

    PubMed  CAS  Google Scholar 

  • Agid Y, Bonet A-M, Ruberg M, Javoy-Agid R. Pathophysiology of L-dopa-induced abnormal involuntary movements. In Casy et al. (Eds) Dyskinesia research and treatment, pp. 137–144, Springer-Verlag, New York, 1985

    Google Scholar 

  • Agid Y, Bonet A-M, Signoret J-L, Lhermitte F. Clinical pharmacological and biochemical approach of ‘onset-and-end-of-dose’ dyskinesias. Advances in Neurology 24: 401–410, 1979

    Google Scholar 

  • Albert KS, Hallmark MR, Sakmar E, Weidler DJ, Wagner JG. Pharmacokinetics of diphenhydramine in man. Journal of Pharmacokinetics and Biopharmaceutics 3: 159–170, 1975

    PubMed  CAS  Google Scholar 

  • Andersson I, Granerus AK, Jagenburg R, Svanborg A. Intestinal decarboxylation of orally administered L-dopa. Acta Medica Scandinavica 198: 415–420, 1975

    Article  PubMed  CAS  Google Scholar 

  • Aoki FY, Sitar DS. Amantadine kinetics in healthy elderly men: implications for influenza prevention. Clinical Pharmacology and Therapeutics 37: 137–144, 1985

    Article  PubMed  CAS  Google Scholar 

  • Aoki FY, Sitar DS, Ogilvie RI. Amantadine kinetics in healthy young subjects after long-term dosing. Clinical Pharmacology and Therapeutics 26: 729–736, 1979

    PubMed  CAS  Google Scholar 

  • Ballard PA, Tetrud JW, Langston JW. Permanent human Parkinsonism due to 1-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP): seven cases. Neurology 35: 949–956, 1985

    Article  PubMed  CAS  Google Scholar 

  • Barbeau A. The clinical physiology of side effects in long-term L-dopa therapy. Advances in Neurology 5: 347–365, 1974

    PubMed  CAS  Google Scholar 

  • Bartholini G, Pletscher A. Cerebral accumulation and metabolism of C14-dopa after selective inhibition of peripheral decarboxylase. Journal of Pharmacology and Experimental Therapeutics 161: 14–20, 1968

    PubMed  CAS  Google Scholar 

  • Bergmann S, Curzon G, Freidel J, Godwin-Austen RB, Marsden CD, et al. The absorption and metabolism of a standard oral dose of levodopa in patients with parkinsonism. British Journal of Clinical Pharmacology 1: 417–424, 1974

    Article  PubMed  CAS  Google Scholar 

  • Bergmark J, Carlsson A, Granerus A-K, Jagenburg R, Magnusson T, et al. Decarboxylation of orally administered L-dopa in the human digestive tract. Naunyn-Schmiedeberg’s Archive of Pharmacology 272: 437–440, 1972

    Article  CAS  Google Scholar 

  • Bertler A, Rosengren E. Occurrence and distribution of catecholamines in brain. Acta Physiologica Scandinavica 47: 350, 1959

    PubMed  CAS  Google Scholar 

  • Bianchine JR, Messina FS, Hsu TH. Peripheral aromatic L-amino acids decarboxylase in parkinsonism II: effect on metabolism of L-2-14C-dopa. Clinical Pharmacology and Therapeutics 13: 584–594, 1972

    PubMed  CAS  Google Scholar 

  • Bianchine JR, Rivera-Calimlim L, Morgan JP, Dujuvone CA, Lasagna L. Metabolism and absorption of L-3,4, dihydroxyphenylalanine in patients with Parkinson’s disease. Annals of the New York Academy of Science 179: 126–140, 1971

    Article  CAS  Google Scholar 

  • Bilzer W, Gundert-Remy U. Determination of nanogram quantities of diphenhydramine and orphenadrine in human plasma using gas-liquid chromatography. European Journal of Clinical Pharmacology 6: 268–270, 1973

    Article  PubMed  CAS  Google Scholar 

  • Birket-Smith E. Abnormal involuntary movements in relation to anticholinergics and levodopa therapy. Acta Neurologica Scandinavica 52: 158–160, 1975

    Article  PubMed  CAS  Google Scholar 

  • Birkmayer W, Riederer P, Youdim MBH, Linauer W. The potentiation of the anti-akinetic effect after levodopa treatment by an inhibitor of MAO-B, deprenyl. Journal of Neural Transmission 36: 303–326, 1975

    Article  PubMed  CAS  Google Scholar 

  • Bleidner WP, Harmon JB, Hewes WE, Lynes TE, Herman EC. Absorption, distribution and excretion of amantadine hydrochloride. Journal of Pharmacology and Experimental Therapeutics 150: 484–489, 1965

    PubMed  CAS  Google Scholar 

  • Blyden GT, Greenblatt DJ, Scavone JM, Shader RI. Pharmacokinetics of diphenhydramine and a demethylated metabolite following intravenous and oral administration. Journal of Clinical Pharmacology 26: 529–533, 1986

    PubMed  CAS  Google Scholar 

  • Bronaugh RL, Wenger CR, Garver DL, Rutledge CO. Effect of carbidopa on the metabolism of L-dopa in the pigtail monkey. Biochemical Pharmacology 25: 1679, 1976

    Article  PubMed  CAS  Google Scholar 

  • Burke RE, Fahn S. Serum trihexyphenidyl levels in the treatment of torsion dystonia. Neurology 35: 1066–1069, 1985a

    Article  PubMed  CAS  Google Scholar 

  • Burke RE, Fahn S. Pharmacokinetics of trihexyphenidyl after short-term and long-term administration to dystonic patients. Annals of Neurology 18: 35–40, 1985b

    Article  PubMed  CAS  Google Scholar 

  • Burns RS, Calne DB. Treatment of Parkinsonism with artificial dopaminomimetics: pharmacokinetic considerations. In Corsini & Gessa (Eds) Apomorphine and other dopaminomimetics, Vol. 2, pp. 93–106, Raven Press, New York, 1981

    Google Scholar 

  • Burns RS, Calne DB. Disposition of dopaminergic ergot compounds following oral administration. In Calne et al. (Eds) Lisuride and other dopamine agonists, pp. 153–159, Raven Press, New York, 1983

    Google Scholar 

  • Burns RS, Chiueh CC, Parisi J, Markey S, Kopin I. Biochemical and pathological effects of MPTP in the Rhesus monkey. In Fahn et al. (Eds) Recent developments in Parkinson’s disease research, pp. 127–136, Raven Press, New York, 1986

    Google Scholar 

  • Burns RS, Gopinathan G, Humpel M, Dorow R, Calne DB. The pharmacokinetics of lisuride in parkinsonian patients. Neurology 31: 49–50, 1981

    Google Scholar 

  • Burns RS, Gopinathan G, Humpel M, Dorow R, Calne DB. Disposition of oral lisuride in Parkinson’s disease. Clinical Pharmacology and Therapeutics 35: 548–556, 1984

    Article  PubMed  CAS  Google Scholar 

  • Calne D, Karoum F, Ruthven C, Sandler M. The metabolism of orally administered L-dopa in parkinsonism. British Journal of Pharmacology 37: 57–68, 1969

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, Lindquist M, Magnusson T. 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophane as reserpine antagonists. Nature 180: 1200, 1957

    Article  PubMed  CAS  Google Scholar 

  • Cedarbaum JM, Breck L, Kutt H, McDowell FH. Controlled-release levodopa/carbidopa I: Sinemet CR3 treatment of response fluctuations in Parkinson’s disease. Neurology 37: 233–241, 1987a

    Article  PubMed  CAS  Google Scholar 

  • Cedarbaum JM, Breck L, Kutt H, McDowell FH. Controlled-release levodopa/carbidopa II: Sinemet CR4 treatment of response fluctuations in Parkinson’s disease. Neurology, in press, 1987b

    Google Scholar 

  • Cedarbaum JM, Kutt H, Dhar AK, Watkins S, McDowell FH. Effect of supplemental carbidopa on the bioavailability of 1-dopa. Clinical Neuropharmacology 9: 153–159, 1986

    Article  PubMed  CAS  Google Scholar 

  • Cedarbaum JM, Kutt H, McDowell FH. Clinical implications of the relationship between 3-O-methyldopa and levodopa levels in Parkinson’s disease. Neurology 37 (Suppl. 1): 1987c

    Google Scholar 

  • Cedarbaum JM, McDowell FH. Sixteen-year followup of patients begun on 1-dopa in 1968: emerging problems. Advances in Neurology 45: 469–472, 1986

    Google Scholar 

  • Cedarbaum JM, Williamson R, Kutt H. Simultaneous determination of levodopa, its metabolites and carbidopa in clinical samples. Journal of Chromatography 415: 393–399, 1987d

    Article  PubMed  CAS  Google Scholar 

  • Chase TN, Watanabe AM. Methyldopahydrazine as an adjunct to 1-dopa therapy in Parkinsonism. Neurology 22: 384–392, 1972

    Article  PubMed  CAS  Google Scholar 

  • Cotzias GC, Papavasiliou PS. Blocking the negative effects of pyridoxine on patients receiving levodopa. Journal of the American Medical Association 215: 1504–1505, 1971

    Article  PubMed  CAS  Google Scholar 

  • Cotzias GC, Papavasiliou PS, Ginos J, Steck A, Duby S. Metabolic modification of Parkinson’s disease and of chronic manganese poisoning. Annual Reviews of Medicine 22: 305–326, 1971

    Article  CAS  Google Scholar 

  • Cotzias GC, VanWoert MH, Schiffer LM. Aromatic amino acids and modification of parkinsonism. New England Journal of Medicine 276: 374–379, 1967

    Article  PubMed  CAS  Google Scholar 

  • Csanda E, Antal J, Antony M, Csanaky A. Experiences with L-deprenyl in parkinsonism. Journal of Neural Transmission 43: 263–269, 1978

    Article  PubMed  CAS  Google Scholar 

  • Curzon G, Friedel J, Grier L, Marsden CD, Parkes JD, et al. Sustained release levodopa in Parkinsonism. Lancet 1: 781, 1973

    Article  PubMed  CAS  Google Scholar 

  • Dairman W, Christenson JG, Udenfriend S. Decrease in liver aromatic L-amino acid decarboxylase produced by chronic administration of L-dopa. Proceedings of the National Academy of Sciences (USA) 68: 2117–2120, 1971

    Article  CAS  Google Scholar 

  • Dallos V, Heathfield K, Stone P, Allen F. Comparative value of amantadine and levodopa in Parkinson’s disease. Postgraduate Medical Journal 48: 354–358, 1972

    Article  PubMed  CAS  Google Scholar 

  • Dean K, Land G, Bye A. Analysis of procyclidine in human plasma and urine by gas-liquid chromatography. Journal of Chromatography 221: 408–413, 1981

    Google Scholar 

  • Debono A, Marsden CD, Asselman P, Parkes JD. Bromocriptine and dopamine receptor stimulation. British Journal of Clinical Pharmacology 3: 977–982, 1976

    Article  PubMed  CAS  Google Scholar 

  • Diamond SG, Markham CH, Trecocias LJ. A double-blind comparison of levodopa, Madopar and Sinemet in Parkinson disease. Annals of Neurology 3: 263–272, 1978

    Article  Google Scholar 

  • Doshay LJ, Constable K. Artane therapy for Parkinsonism. Journal of the American Medical Association 140: 1317–1322, 1949

    Article  PubMed  CAS  Google Scholar 

  • Doshay LJ, Constable K. Five-year follow-up of treatment with trihexyphenidyl (Artane®). Journal of the American Medical Association 154: 1334–1336, 1954

    Article  PubMed  CAS  Google Scholar 

  • Doshay LJ, Constable K, Frommer S. Preliminary study of a new antiparkinson agent. Neurology 2: 233–243, 1952

    PubMed  CAS  Google Scholar 

  • Dunner DL, Brodie HKH, Goodwin FK. Plasma dopa response to levodopa administration in man: effects of a peripheral decarboxylase inhibitor. Clinical Pharmacology and Therapeutics 11: 212–217, 1971

    Google Scholar 

  • Duvoisin R. A review of drug therapy in Parkinsonism. Bulletin of the New York Academy of Medicine 421: 898–910, 1965

    Google Scholar 

  • Duvoisin RC. Cholinergic-anticholinergic antagonism in Parkinsonism. Archives of Neurology 17: 124–136, 1967

    Article  PubMed  CAS  Google Scholar 

  • Duvoisin RC, Yahr MD, Cote LD. Pyridoxine reversal of L-dopa effects in parkinsonism. Transactions of the American Neurological Association 94: 81–84, 1969

    PubMed  CAS  Google Scholar 

  • Eadie MJ. Neurological diseases. In Speight TM (Ed.), Avery’s drug treatment, pp. 1078–1136, Adis Press, Auckland, 1987

    Google Scholar 

  • Eckert H, Kiechel JR, Rosenthaler J, Schmidt R, Schrier E. Biopharmaceutical aspects. In Bede & Schild (Eds) Ergot alkaloids and related compounds, handbook of experimental pharmacology, Vol. 49, pp. 719–803, Springer-Verlag, New York, 1978

    Chapter  Google Scholar 

  • Eckstein B, Shaw K, Stern G. Sustained-release levodopa in Parkinsonism. Lancet 1: 431–432, 1973

    Article  PubMed  CAS  Google Scholar 

  • Ehringer H, Hornykiewicz O. Verteilung von noradrenalin und dopamine (3-hydroxytyramin im gehirn des menschen und ihr verhalter bei erkrankungen des extrapyramidalen systems. Klinische Wochenschrift 38: 1263–1239, 1960

    Article  Google Scholar 

  • Eisler T, Eng N, Plotkin C, Calne DB. Absorption of levodopa after rectal administration. Neurology 31: 215–217, 1981

    Article  PubMed  CAS  Google Scholar 

  • Ellison T. Metabolic studies of 3H-orphenadrine citrate in the rat, dog and rhesus monkey. Archives Internationales de Pharmacodynamie et de Therapie 195: 213–230, 1972

    PubMed  CAS  Google Scholar 

  • Ellison T, Snyder A, Bolger J, Okun R. Metabolism of orphenadrine in man. Journal of Pharmacology and Experimental Therapeutics 176: 284–295, 1971

    PubMed  CAS  Google Scholar 

  • Eriksson T, Magnusson T, Carlsson A, Linde A, Granerus A-K. ‘On-off’ phenomenon in Parkinson’s disease: correlation to the concentration of dopa in plasma. Journal of Neural Transmission 59: 229–240, 1984

    Article  PubMed  CAS  Google Scholar 

  • Esplin DW. Centrally acting muscle relaxants; drugs for Parkinson’s disease. In Goodman & Gilman (Eds) The pharmacological basis of therapeutics, 4th ed., pp. 226–236, Macmillan & Co, New York, 1970

    Google Scholar 

  • Evans MA, Triggs EJ, Broe GA, Saines N. Systemic activity of orally administered L-dopa in the elderly Parkinson patient. European Journal of Clinical Pharmacology 17: 215–221, 1980

    Article  PubMed  CAS  Google Scholar 

  • Fabbrini G, Juncos J, Mouradian M, Serrati C, Chase TN. Levodopa pharmacokinetics and motor fluctuations in Parkinson’s disease. Annals of Neurology 21: 370–376, 1987

    Article  PubMed  CAS  Google Scholar 

  • Fahn S. ‘On-off’ phenomenon with levodopa therapy in parkinsonism. Neurology 24: 431–441, 1974

    Article  PubMed  CAS  Google Scholar 

  • Fahn S. Fluctuations of disability in Parkinson’s disease: pathophysiological aspects. In Marsden & Fahn (Eds) Movement disorders, pp. 123–145, Butterworth Scientific, Boston, 1981

    Google Scholar 

  • Fahn S. High dosage anticholinergic therapy in dystonia. Neurology 33: 1255–1261, 1983

    Article  PubMed  CAS  Google Scholar 

  • Fahn S, Craddock G, Kumin G. Acute toxic psychosis from suicidal overdosage of amantadine. Archives of Neurology 25: 45–48, 1971

    Article  PubMed  CAS  Google Scholar 

  • Fahn S, Isgreen WP. Long-term evaluation of amantadine and levodopa combination in Parkinsonism by double-blind crossover analysis. Neurology 25: 695–700, 1975

    Article  PubMed  CAS  Google Scholar 

  • Feischi C, Nardini M, Tedone ME, Reitano M, Robotti R. Amantadine versus 1-dopa and amantadine plus 1-dopa. Lancet 2: 154–155, 1970

    Article  Google Scholar 

  • Fermaglich J, O’Doherty DS. Effect of gastric motility on levodopa. Diseases of the Nervous System 33: 624–625, 1972

    PubMed  CAS  Google Scholar 

  • Ferrini R, Glaser A. In vitro decarboxylation of new phenylalanine derivatives. Biochemical Pharmacology 13: 798–800, 1964

    Article  PubMed  CAS  Google Scholar 

  • Friis ML, Gron U, Larsen NE, Paddenberg H, Huidberg EF. Pharmacokinetics of bromocriptine during continuous oral treatment of Parkinson’s disease. European Journal of Clinical Pharmacology 15: 275–280, 1979

    Article  PubMed  CAS  Google Scholar 

  • Friis ML, Paulson OB, Hertz MM, Bolwig TG. Blood-brain barrier permeability of L-dopa in man. European Journal of Clinical Investigation 11: 231–234, 1981

    Article  PubMed  CAS  Google Scholar 

  • Gancher ST, Nutt JG, Woodward WR. Levodopa pharmacokinetics and pharmacodynamics in untreated, stable and fluctuating parkinsonian patients. (Abstract.) Neurology 36(Suppl. 1): 216, 1986

    Google Scholar 

  • Gianutsos G, Chute S, Dunn JP. Pharmacological changes in dopaminergic systems induced by long-term administration of amantadine. European Journal of Pharmacology 110: 357–361, 1985

    Article  PubMed  CAS  Google Scholar 

  • Glazko AJ, Dill WA, Young RM, Smith TC, Ogilvie RI. Metabolic disposition of diphenhydramine. Clinical Pharmacology and Therapeutics 16: 1066–1076, 1974

    PubMed  CAS  Google Scholar 

  • Glover V, Sandler M, Owen F, Riley GJ. Dopamine is a monoamine oxidase B substrate in man. Nature 265: 80–81, 1977

    Article  PubMed  CAS  Google Scholar 

  • Godwin-Austin RB, Kantamaneni BD, Curzon G. Comparison of benefit of L-dopa therapy in Parkinsonism with increase of amine metabolites in the CSF. Journal of Neurology, Neurosurgery and Psychiatry 34: 219–223, 1971

    Article  Google Scholar 

  • Goldstein M, Lieberman A, Lew JS, Asano T, Rosenfeld MR, Makman MH. Interaction of pergolide with central dopamine receptors. Proceedings of the National Academy of Sciences (USA) 77: 3725–3728, 1980

    Article  CAS  Google Scholar 

  • Goodall MC, Alton H. Metabolism of 3,4-dihydroxyphenylalanine (L-dopa) in human subjects. Biochemical Pharmacology 21: 2401–2408, 1972

    Article  PubMed  CAS  Google Scholar 

  • Granerus AK, Jagenburg R, Svanborg A. Intestinal decarboxylation of L-dopa in relation to dose requirement in Parkinson’s disease. Naunyn-Schmiedeberg’s Archives of Pharmacology 280: 429–439, 1973

    Article  PubMed  CAS  Google Scholar 

  • Greenblatt DJ, DiMascio A, Harmatz JS, Bernado DL, Marder JE. Pharmacokinetics and clinical effects of amantadine in drug-induced extrapyramidal symptoms. Journal of Clinical Pharmacology 17: 704–708; 1977

    PubMed  CAS  Google Scholar 

  • Grimaldi R, Perucca E, Ruberto G, Gelmi C, Trimachi F, et al. Pharmacokinetic and pharmacodynamic studies following the intravenous and oral administration of the antiparkinson drug biperiden to normal subjects. European Journal of Clinical Pharmacology 30: 735–737, 1986

    Article  Google Scholar 

  • Grimes JD, Hassan MN. Importance of bromocriptine dose and frequency of administration during long-term treatment of Parkinson’s disease. In Fahn et al. (Eds.) Recent Developments in Parkinson’s Disease, pp. 279–284, New York, Raven Press, 1986

    Google Scholar 

  • Gumpert J, Sharpe D, Curzon G. Amine metabolites in the cerebrospinal fluid in Parkinson’s disease and response to levodopa. Journal of the Neurological Sciences 19: 1–12, 1973

    Article  PubMed  CAS  Google Scholar 

  • Hardebo JE, Edvinsson L, Owman C, Rosengren E. Quantitative evaluation of the blood-brain barrier capacity to form dopamine from circulating L-dopa. Acta Physiologica Scandinavica 99: 377–384, 1977

    Article  PubMed  CAS  Google Scholar 

  • Hardebo JE, Ernson PC, Balck B, Owman C, Rosengren E. Enzymes related to monoamine transmitter metabolism in brain microvessels. Journal of Neurochemistry 35: 1388–1393, 1980

    Article  PubMed  CAS  Google Scholar 

  • Hardie RJ, Lees AJ, Stern GM. On-off fluctuations in Parkinson’s disease. Brain 107: 487–506, 1984

    Article  PubMed  Google Scholar 

  • Hardie RJ, Malcom SL, Lees AJ, Stern GM, Allen JG. The pharmacokinetics of intravenous and oral levodopa in patients with Parkinson’s disease who exhibit on-off fluctuations. British Journal of Clinical Pharmacology 22: 429–436, 1986

    Article  PubMed  CAS  Google Scholar 

  • Hare TA, Beasley BL, Chambers RA, Boehme DH, Vogel WH. Dopa and amino acid levels in plasma and cerebrospinal fluid of patients with Parkinson’s disease before and during treatment with L-dopa. Clinica Chimica Acta 45a: 273–280, 1973

    Article  Google Scholar 

  • Hinterberger H, Andrews CJ. Catecholamine metabolism during oral administration of levodopa. Archives of Neurology 26: 245–252, 1972

    Article  PubMed  CAS  Google Scholar 

  • Hoehn MM. Increased dosage of carbidopa in patients with Parkinson’s disease receiving low doses of levodopa. Archives of Neurology 37: 146–149, 1980

    Article  PubMed  CAS  Google Scholar 

  • Hollman M, Brode E, Greger G, Muller-Peltzger H, Wetzelsberger N. Biperiden effects and plasma levels in volunteers. European Journal of Clinical Pharmacology 27: 619–621, 1984

    Article  Google Scholar 

  • Horadam VW, Sharp JG, Smilack JD, McAnalley BH, Garriott JC, et al. Pharmacokinetics of amantadine hydrochloride in subjects with normal and impaired renal function. Annals of Internal Medicine 94 (4 part 1): 454–458, 1981

    PubMed  CAS  Google Scholar 

  • Hsu TH, Bianchine JR, Preziosi TJ, Messiha FS. Effect of pyridoxine on levodopa metabolism in normal and Parkinsonian subjects. Proceedings of the Society for Experimental Biology and Medicine 143: 578–581, 1973

    PubMed  CAS  Google Scholar 

  • Hughes JL, Polgar JG, Weightmen D, Walton JN. Levodopa in parkinsonism: the effects of withdrawal of anticholinergic drugs. British Medical Journal 2: 487–491, 1971

    Article  PubMed  CAS  Google Scholar 

  • Humpel M. Pharmacokinetics of lisuride in animal species and in humans. In Calne et al. (Eds) Lisuride and other dopamine agonists, pp. 141–152, Raven Press, New York, 1983

    Google Scholar 

  • Humpel M, Krause W, Hoyer GA, Wendt H, Pommerenke G. The pharmacokinetics and biotransformation of 14C-lisuride hydrogen maleate in rhesus monkey and in man. European Journal of Drug Metabolism and Pharmacokinetics 9: 347–357, 1984

    Article  PubMed  CAS  Google Scholar 

  • Humpel M, Nieuweber B, Wendt H, Hasan SH. Radioimmunoassay of plasma lisuride in man following intravenous and oral administration of lisuride hydrogen maleate: effects on plasma prolactin level. European Journal of Clinical Pharmacology 20: 47–51, 1981a

    Article  PubMed  CAS  Google Scholar 

  • Humpel M, Toda T, Oshino N, Pormmerenke G. The pharmacokinetics of lisuride hydrogen maleate in rat, rabbit and rhesus monkey. European Journal of Drug Metabolism and Pharmacokinetics 6: 207–219, 1981b

    Article  PubMed  CAS  Google Scholar 

  • Hunter KR, Stern GM, Laurence DR. Use of levodopa with other drugs. Lancet 2: 1283–1285, 1970

    Article  PubMed  CAS  Google Scholar 

  • Ilson J, Fahn S, Mayeux R, Cote L. Pergolide treatment in Parkinsonism. In Calne et al. (Eds) Lisuride and other dopamine agonists, pp. 443–451, Raven Press, New York, 1983

    Google Scholar 

  • Ing TS, Daugirdas JT, Soung LS, et al. Toxic effects of amantadine in patients with renal failure. Canadian Medical Association Journal 120: 695–698, 1979

    PubMed  CAS  Google Scholar 

  • Jequier WN, Dufresne JJ. Biochemical investigations in patients with Parkinson’s disease treated with L-dopa. Neurology 22: 15–21, 1972

    Article  PubMed  CAS  Google Scholar 

  • Juncos J, Serrati C, Fabrini G, Chase TN. Fluctuating levodopa concentrations and Parkinson’s disease. Lancet 2: 440, 1985

    Article  PubMed  CAS  Google Scholar 

  • Kissinger PT. Determination of biogenic amines and their metabolites by liquid chromatography/electrochemistry. In Parvez et al. (Eds.) Methods in Biogenic Amine Research, pp. 75–99, Elsevier, Amsterdam, 1983

    Google Scholar 

  • Knoll J. The possible mechanisms of action of (−)deprenyl in Parkinson’s disease. Journal of Neural Transmission 43: 177–198, 1978

    Article  PubMed  CAS  Google Scholar 

  • Knoll J. Role of B-type monoamine oxidase inhibition in the treatment of Parkinson’s disease. In Shah & Donald (Eds) Movement disorders, pp. 53–81, Plenum Press, New York, 1986

    Chapter  Google Scholar 

  • Koller WC, Weiner WJ, Nauseida PA, Klawans HL. Bromocriptine: decreased clinical effect at higher dosages. Neurology 29: 1439–1440, 1979

    Article  PubMed  CAS  Google Scholar 

  • Kremzner LT, Berl S, Mendoza M, Yahr MD. Cerebrospinal fluid levels of dopa and 3-O-methyldopa in Parkinsonism during treatment with L-dopa and MK-486. Advances in Neurology 2: 79–89, 1973

    Google Scholar 

  • Kurlan R, Rubin AJ, Miller C, Rivera-Calimlim L, Clarke A, et al. Duodenal delivery of levodopa for on-off fluctuations in Parkinsonism: Preliminary observations. Annals of Neurology 20: 262–265, 1986

    Article  PubMed  CAS  Google Scholar 

  • Kuruma I, Bartholini G, Tissot R, Pletscher A. Comparative investigation of inhibitors of extracerebral dopa decarboxylase in man and rats. Journal of Pharmacy and Pharmacology 24: 289–294, 1972

    Article  PubMed  CAS  Google Scholar 

  • Kuruma IL, Bartholini G, Tissot R, Pletscher A. The metabolism of L-3-O-methyldopa, a precursor of dopa in man. Clinical Pharmacology and Therapeutics 12: 678–682, 1971

    PubMed  CAS  Google Scholar 

  • Labout JJ, Thyssen C, Keijser GG, Hespe W. Difference between single and multiple dose pharmacokinetics of orphenadrine hydrochloride in man. European Journal of Clinical Pharmacology 21: 343–350, 1982

    Article  PubMed  CAS  Google Scholar 

  • Laitinen LV. Slowly absorbed L-dopa in the treatment of parkinsonism. Acta Neurologica Scandinavica 49: 331–338, 1973

    Article  PubMed  CAS  Google Scholar 

  • Larsen TA, Newman R, LeWitt P, Calne DB. Severity of Parkinson’s disease and the dosage of bromocriptine. Neurology 34: 795–797, 1984

    Article  PubMed  CAS  Google Scholar 

  • Leenders KL, Palmer AJ, Quinn N, Clark JC, Firnau G, et al. Brain dopamine metabolism in patients with Parkinson’s disease measured with positron emission tomography. Journal of Neurology, Neurosurgery and Psychiatry 49: 861–866, 1986a

    Article  Google Scholar 

  • Leenders KL, Poewe WH, Palmer AJ, Brenton DP, Frackowick RSJ. Inhibition of L-[18F] fluorodopa uptake into human brain by amino acids demonstrated by positron emission tomography. Annals of Neurology 29: 258–262, 1986b

    Article  Google Scholar 

  • Leenders K, Palmer A, Turton D, Quinn N, Firnau G, et al. Dopa uptake and dopamine receptor binding visualized in the human brain in vivo. In Fahn et al. (Eds) Recent developments in Parkinson’s disease research, pp. 103–113, Raven Press, New York, 1986c

    Google Scholar 

  • Lees AJ, Kohout LJ, Shaw KM, Stern GM, Ellsworth JD, et al. Deprenyl in Parkinson’s disease. Lancet 2: 791–795, 1977

    Article  PubMed  CAS  Google Scholar 

  • Lemberger L, Crabtree RE. Pharmacologic effects in man of a potent, long-acting dopamine receptor agonist. Science 205: 1151–1153, 1979

    Article  PubMed  CAS  Google Scholar 

  • Lemberger L, Crabtree R, Callaghan JT. Pergolide, a potent long-acting dopamine-receptor agonist. Clinical Pharmacology and Therapeutics 27: 642–651, 1980

    Article  PubMed  CAS  Google Scholar 

  • Leon AD, Spiegel HE. The effect of antacid administration on the absorption and metabolism of levodopa. Journal of Clinical Pharmacology 12: 263–267, 1972

    CAS  Google Scholar 

  • Leon AS, Spiegel HE, Thomas G, Abrams WB. Pyridoxine antagonism of levodopa in parkinsonism. Journal of the American Medical Association 218: 1924–1929, 1971

    Article  PubMed  CAS  Google Scholar 

  • LeWitt PA, Burns RS, Calne DB. Lisuride treatment in Parkinson’s disease: clinical and pharmacokinetic studies. Advances in Neurology 37: 131–140, 1983

    PubMed  CAS  Google Scholar 

  • LeWitt P, Calne DB. Experience with dopamine agonists in Parkinson’s disease and related disorders. In Calne et al. (Eds) Lisuride and other dopamine agonists, pp. 473–480, Raven Press, New York, 1983

    Google Scholar 

  • Lieberman AN, Goldstein M. Treatment of advanced Parkinson’s disease with dopamine agonists, in Marsden and Fahn, (Eds) Movement Disorders, pp. 146–165, Butterworth Scientific, Boston, 1981

    Google Scholar 

  • Lhermitte F, Agid Y, Signoret J-L, Studler J-M. Les dyskinesies de ‘debut et fin de dose’ provoquees par la L-dopa. Revue Neurologique 133: 292–300, 1977a

    Google Scholar 

  • Lhermitte F, Agid Y, Fuerestein C, Serre F, Signoret J-L, et al. Mouvements anormaux provoques par la 1 dopa dans la maladie de Parkinson: correlation avec les concentrations plasmatiques de dopa et d’O-methyldopa. Revue Neurologique 133: 445–454, 1977b

    PubMed  CAS  Google Scholar 

  • Lhermitte F, Agid Y, Signoret J-L. Onset and end-of-dose levodopa induced dyskinesias: possible treatment by increasing the daily doses of levodopa. Archives of Neurology 35: 261–263, 1978

    Article  PubMed  CAS  Google Scholar 

  • Lieberman A, Esty E, Gopinathan G, Ohashi T, Sauter A, Goldstein M. Comparative effectiveness of two extracerebral dopadecarboxylase inhibitors in Parkinson disease. Neurology 28: 964–968, 1978

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Cheng PJ, Ing TS, Daugirdas JT, Jeevanandhan R. In vitro binding of amantadine to plasma proteins. Clinical Neuropharmacology 7: 149–151, 1984

    Article  PubMed  CAS  Google Scholar 

  • Magyar K, Knoll H. Selective inhibition of ‘B-form’ of monoamine oxidase. Polish Journal of Pharmacology and Pharmacy 29: 233–261, 1977

    PubMed  CAS  Google Scholar 

  • Magyar K, Tothfalusi L. Pharmacokinetic aspects of deprenyl effects. Polish Journal of Pharmacology and Pharmacy 36: 373–384, 1984

    PubMed  CAS  Google Scholar 

  • Marion MH, Stocci F, Quinn NP, Jenner P, Marsden CD. Repeated levodopa infusions in fluctuating Parkinson’s disease: clinical and pharmacokinetic data. Clinical Neuropharmacology 9: 165–181, 1986

    Article  PubMed  CAS  Google Scholar 

  • Markovitz DC, Fernstrom JD. Diet and uptake of aldomet by the brain: competition with natural large neutral amino acids. Science 197: 1014–1015, 1977

    Article  PubMed  CAS  Google Scholar 

  • Markstein R. Neurochemical effects of some ergot derivatives. A basis for their antiparkinson actions. Journal of Neural Transmission 51: 39–59, 1981

    Article  PubMed  CAS  Google Scholar 

  • Mars H. Modification of levodopa effect by systemic decarboxylase inhibition. Archives of Neurology 28: 9195, 1973

    Article  Google Scholar 

  • Mars H. Levodopa, carbidopa and pyridoxine in Parkinson’s disease; metabolic interactions. Archives of Neurology 30: 444–447, 1974

    Article  PubMed  CAS  Google Scholar 

  • Marsden CD, Parkes JD. Success and problems of long-term levodopa therapy in Parkinson’s disease. Lancet 1: 345–349, 1977

    Article  PubMed  CAS  Google Scholar 

  • Marsden CD, Parkes JD, Quinn N. Fluctuations of disability in Parkinson’s disease: clinical aspects. In Marsden & Fahn (Eds) Movement disorders, pp. 96–122, Butterworth Scientific, Boston, 1981

    Google Scholar 

  • McDowell FH, Lee JE, Swift T, Sweet RD, Ogsbury JS, et al. Treatment of Parkinson’s syndrome with L-dihydroxyphenylalanine (levodopa). Annals of Internal Medicine 72: 29–35, 1970

    PubMed  CAS  Google Scholar 

  • Mearrick PT, Graham GG, Wade DN. The role of the liver in the clearance of L-dopa from plasma. Journal of Pharmacokinetics and Biopharmaceutics 3: 13–23, 1975

    PubMed  CAS  Google Scholar 

  • Melamed E. Early-morning dystonia: a late side-effect of long-term levodopa therapy in Parkinson’s disease. Archives of Neurology 36: 308–310, 1979

    Article  PubMed  CAS  Google Scholar 

  • Melamed E, Bitton V, Zelig O. Episodic total unresponsiveness to single doses of L-dopa in Parkinsonian fluctuators: a side-effect of long-term 1-dopa therapy. Neurology 36: 100–103, 1986a

    Article  PubMed  CAS  Google Scholar 

  • Melamed E, Bitton V, Zelig O. Delayed onset of responses to single doses of L-dopa in Parkinsonian fluctuators on long-term 1-dopa therapy. Clinical Neuropharmacology 9: 182–188, 1986b

    Article  PubMed  CAS  Google Scholar 

  • Mena I, Cotzias GC. Protein intake and treatment of Parkinson’s disease with levodopa. New England Journal of Medicine 292: 181–184, 1975

    Article  PubMed  CAS  Google Scholar 

  • Meredith CG, Christian Jr CD, Johnson RF, Madhavan SV, Schenker S. Diphenhydramine disposition in chronic liver disease. Clinical Pharmacology and Therapeutics 35: 474–479, 1984

    Article  PubMed  CAS  Google Scholar 

  • Messiha F, Hsu T, Bianchine J. Peripheral aromatic L-aminoacids decarboxylase inhibitor in parkinsonism I: effect on O-methylated metabolites of 1-2-14C-dopa. Journal of Clinical Investigation 51: 452–455, 1972

    Article  PubMed  CAS  Google Scholar 

  • Morgan JP, Bianchine JR, Spiegel HE, Rivera-Calimlim L, Hersey RM. Metabolism of levodopa in patients with Parkinson’s disease. Archives of Neurology 25: 39–43, 1971

    Article  PubMed  CAS  Google Scholar 

  • Morgan JP, Rivera-Calimlim L, Messiha F, Sundaresan PR, Trabert N. Imipramine-mediated interference with levodopa absorption from the gastro-intestinal tract in man. Neurology 25: 1029–1034, 1975

    Article  PubMed  CAS  Google Scholar 

  • Morgan JP, Bianchine JR, Spiegel HE, Rivera-Calimlim L, Hersey RM. Metabolism of levodopa in patients with Parkinson’s disease. Archives of Neurology 25: 39–43, 1971

    Article  PubMed  CAS  Google Scholar 

  • Morris JGL, Parsons RL, Trounce JR, Groves MJ. Plasma DOPA concentrations after different preparations of levodopa in normal subjects. British Journal of Clinical Pharmacology 3: 983–990, 1976

    Article  PubMed  CAS  Google Scholar 

  • Muenter MD, DiNapoli RP, Sharpless NS, Tyce GM. 3-O-Methyldopa, L-dopa and trihexyphenidyl in the treatment of Parkinson’s disease. Mayo Clinic Proceedings 48: 173–180, 1973

    PubMed  CAS  Google Scholar 

  • Muenter MD, Sharpless NS, Tyce GM. Plasma 3-O-methyldopa in L-dopa therapy of Parkinson’s disease. Mayo Clinic Proceedings 47: 389–395, 1972

    PubMed  CAS  Google Scholar 

  • Muenter MD, Sharpless NS, Tyce GM, Darley FL. Patterns of dystonia (‘I-D-I’ and ‘D-I-D’) in response to L-dopa therapy for Parkinson’s disease. Mayo Clinic Proceedings 52: 163–174, 1977

    PubMed  CAS  Google Scholar 

  • Muenter MD, Tyce GM. 1-Dopa therapy of Parkinson’s disease: plasma l-dopa concentration, therapeutic response and side effects. Mayo Clinic Proceedings 46: 231–239, 1971

    PubMed  CAS  Google Scholar 

  • Nastuk WL, Su P, Doubilet P. Anticholinergic and membrane activities of amantadine in neuromuscular transmission. Nature 264: 76–79, 1976

    Article  PubMed  CAS  Google Scholar 

  • Nation RL, Triggs EJ, Vine J. Metabolism and urinary excretion of benzhexol in humans. Xenobiotica 8: 165–169, 1978

    Article  PubMed  CAS  Google Scholar 

  • Nutt JG, Fellman JH. Pharmacokinetics of levodopa. Clinical Neuropharmacology 7: 35–49, 1984

    Article  PubMed  CAS  Google Scholar 

  • Nutt JG, Woodward WR, Hammarstad JP, Carter JH, Anderson JL. The ‘on-off’ phenomenon in Parkinson’s disease: relation to levodopa absorption and transport. New England Journal of Medicine 310: 483–488, 1984

    Article  PubMed  CAS  Google Scholar 

  • Nutt JG, Woodward WR, Carter JH. Clinical and biochemical studies with controlled-release levodopa/carbidopa. Neurology 36: 1206–1211, 1986

    Article  PubMed  CAS  Google Scholar 

  • Nutt JG, Woodward WR, Anderson JL. The effect of carbidopa on the pharmacokinetics of intravenously administered levodopa: the mechanism of action in the treatment of parkinsonism. Annals of Neurology 18: 537–543, 1985

    Article  PubMed  CAS  Google Scholar 

  • Nutt JG, Woodward WR. Levodopa pharmacokinetics and pharmacodynamics in fluctuating parkinsonian patients. Neurology 36: 739–744, 1986

    Article  PubMed  CAS  Google Scholar 

  • Obeso JA, Luquin MR, Martinez-Lage JM. Intravenous lisuride corrects oscillations in motor performance in Parkinson’s disease. Annals of Neurology 19: 31–35, 1986a

    Article  PubMed  CAS  Google Scholar 

  • Obeso JA, Luquin MR, Martinez-Lage JM. Treatment of motor fluctuations in Parkinson’s disease by continuous subcutaneous administration of lisuride. Neurology 36(Suppl. 1): 216, 1986b

    Google Scholar 

  • Ogasahara S, Nishikawa Y, Takahashi M, Wada K, Nakamura Y, et al. Dopamine metabolism in the central nervous system after discontinuation of L-dopa therapy in patients with Parkinson’s disease. Journal of the Neurological Sciences 66: 151–163, 1984

    Article  PubMed  CAS  Google Scholar 

  • Ordenstein L. Sur le paralysie agitante et la sclérose en plaques géneralisée. Doctoral thesis Martinet, Paris, 1867

    Google Scholar 

  • Oreland L, Johansson T, Ekstedt J. Dose regimen of deprenyl (selegilene) and platelet MAO activities. Acta Neurologica Scandinavica 95 (Suppl.): 87–89, 1983

    Article  PubMed  CAS  Google Scholar 

  • Ottoila P, Taskinen J. Determination of biperiden in human serum by glass capillary gas chromatography and nitrogen-sensitive detection. Journal of Chromatography 226: 488–491, 1981

    Article  PubMed  CAS  Google Scholar 

  • Owman C, Rosengren E. Dopamine formation in brain capillaries. An enzymatic blood-brain barrier mechanism. Journal of Neurochemistry 14: 547–550, 1967

    Article  PubMed  CAS  Google Scholar 

  • Pacifici GM, Nardini M, Ferrari P, Latini R, Fieschi C, et al. Effect of amantadine on drug-induced parkinsonism: relationship between plasma levels and effect. British Journal of Clinical Pharmacology 3: 883–889, 1976

    Article  PubMed  CAS  Google Scholar 

  • Papavasiliou PS, McDowell FH, Wang YY, Rosal V, Miller ST. Plasma dopa and growth hormone in Parkinsonism: oscillations in symptoms. Neurology 29: 194–200, 1979

    Article  PubMed  CAS  Google Scholar 

  • Pardridge WM. Kinetics of competitive inhibition of neutral amino acid transport across the blood-brain barrier. Journal of Neurochemistry 28: 103–108, 1977

    Article  PubMed  CAS  Google Scholar 

  • Pardridge WM, Oldendorf WH. Kinetic analysis of blood-brain barrier transport of amino acids. Biochimica Biophysica Acta 401: 128–136, 1975

    Article  CAS  Google Scholar 

  • Parkes JD, Schacter M, Marsden CD, Smith B, Wilson A. Lisuride in Parkinsonism. Annals of Neurology 9: 48–52, 1981

    Article  PubMed  CAS  Google Scholar 

  • Parkes JD, Ziskha KJ, Marsden CD, Baxter RCH, Knill-Jones RP. Amantadine dosage in the treatment of Parkinson’s disease. Lancet 1: 1130–1133, 1970

    Article  PubMed  CAS  Google Scholar 

  • Pilling JG, Baker J, Iverson LL, Iverson SD, Robbins I. Plasma concentrations of L-dopa and 3-methoxydopa and improvement in clinical ratings and motor performance in patients with parkinsonism treated with L-dopa alone or in combination with amantadine. Journal of Neurology, Neurosurgery and Psychiatry 38: 129–135, 1975

    Article  CAS  Google Scholar 

  • Pletscher A. Effect of inhibitors of extracerebral decarboxylase on levodopa metabolism. Advances in Neurology 3: 49–58, 1973

    CAS  Google Scholar 

  • Pletscher A, Bartholini G, Tissot R. Metabolic fate of L-[14C] dopa in cerebrospinal fluid and blood plasma in humans. Brain Research 4: 106–109, 1967

    Article  PubMed  CAS  Google Scholar 

  • Poewe WH, Lees AJ, Stern GM. Treatment of motor fluctuations in Parkinson’s disease with an oral sustained-release preparation of L-dopa: clinical and pharmacokinetic observations. Clinical Neuropharmacology 9: 430–439, 1986

    Article  PubMed  CAS  Google Scholar 

  • Preziosi TJ, Bianchine JR, Hsu TH, Nessiha FS. L-Methyldopahydrazine (MK 486) and L-dopa, a double-blind study in Parkinsonism. Transactions of the American Neurological Association 97: 321–322, 1972

    Google Scholar 

  • Price P, Debono A, Parkes JD, Marsden CD, Rosenthaler J. Plasma bromocriptine levels, clinical and growth hormone responses in Parkinsonism. British Journal of Clinical Pharmacology 6: 303–309, 1978

    Article  PubMed  CAS  Google Scholar 

  • Quinn N, Marsden CD, Parkes JD. Complicated response fluctuations in Parkinson’s disease. Lancet 2: 412–415, 1982

    Article  PubMed  CAS  Google Scholar 

  • Quinn N, Marsden CD, Schacter M, Thompson C, Lang AE, et al. Intravenous lisuride in extrapyramidal disorders. In Calne et al. (Eds) Lisuride and other dopamine agonists, pp. 383–393, Raven Press, New York, 1983

    Google Scholar 

  • Quinn NP, Parkes JD, Marsden CD. Control of on/off phenomenon by continuous intravenous infusion of levodopa. Neurology 34: 1131–1136, 1984

    Article  PubMed  CAS  Google Scholar 

  • Reilly DK, Rivera-Calimlim L, Van Dyke D. Catechol-O-methyltransferase activity: a determinant of levodopa response. Clinical Pharmacology and Therapeutics 28: 278–286, 1980

    Article  PubMed  CAS  Google Scholar 

  • Reynolds GP, Elsworth JD, Blau K, Sandler M, Lees AJ, et al. Deprenyl is metabolized to methamphetamine and amphetamine in man. British Journal of Clinical Pharmacology 6: 542–544, 1978

    Article  PubMed  CAS  Google Scholar 

  • Rinne UK. Treatment of Parkinson’s disease: problems with a progressing disease. Journal of Neural Transmission 51: 161–174, 1981

    Article  PubMed  CAS  Google Scholar 

  • Rinne UK, Molsa P. Levodopa with benserazide or carbidopa in Parkinson disease. Neurology 29: 1584–1589, 1979

    Article  PubMed  CAS  Google Scholar 

  • Rinne UK, Siirtola T, Sonninen V. L-Deprenyl treatment of on-off phenomena in Parkinson’s disease. Journal of Neural Transmission 43: 253–262, 1978

    Article  PubMed  CAS  Google Scholar 

  • Rinne UK, Sonninen V. Brain catecholamines and their metabolites in Parkinsonian patients. Archives of Neurology 28: 107–110, 1973

    Article  PubMed  CAS  Google Scholar 

  • Rinne UK, Sonninen V, Siirtola T. L-dopa treatment in Parkinson’s disease. European Neurology 4: 348–369, 1970

    Article  PubMed  CAS  Google Scholar 

  • Rinne UK, Sonninen V, Siirtola T. Acid monoamine metabolites in the cerebrospinal fluid of parkinsonian patients treated with levodopa alone or combined with a decarboxylase inhibitor. European Neurology 9: 349–362, 1973a

    Article  PubMed  CAS  Google Scholar 

  • Rinne UK, Sonninen V, Siirtola T. Plasma concentration of levodopa in patients with Parkinson’s disease. European Neurology 10: 301–310, 1973b

    Article  PubMed  CAS  Google Scholar 

  • Rivera-Calimlim L. Effect of chronic drug treatment on intestinal membrane transport of 14C-L-dopa. British Journal of Pharmacology 46: 708–713, 1972

    Article  PubMed  CAS  Google Scholar 

  • Rivera-Calimlim L, Deepak T, Anderson R, Joynt R. The clinical picture and plasma levodopa metabolite profile of parkinsonian nonresponders. Archives of Neurology 34: 228–232, 1977

    Article  PubMed  CAS  Google Scholar 

  • Rivera-Calimlim L, Dujuvone CA, Morgan JP, Lasagna L, Bianchine JR. L-Dopa treatment failure: explanation and correction. British Medical Journal 4: 93–94, 1970a

    Article  PubMed  CAS  Google Scholar 

  • Rivera-Calimlim L, Morgan JP, Dujuvone CA, Bianchine JR, Lasagna L. 1-Dopa absorption and metabolism by the human stomach. Journal of Clinical Investigation 49: 79a, 1970b

    Google Scholar 

  • Rivera-Calimlim L, Morgan JP, Dujuvone CA, Bianchine JR, Lasagna L. L-3,4 Dihydroxyphenylalanine metabolism by the gut in vitro. Biochemical Pharmacology 20: 3051–3057, 1971

    Article  PubMed  CAS  Google Scholar 

  • Rossor MN, Watkins J, Brown MJ, Reid JL, Dollery CT. Plasma levodopa, dopamine and therapeutic response following levodopa therapy of parkinsonian patients. Journal of the Neurological Sciences 46: 385–392, 1980

    Article  PubMed  CAS  Google Scholar 

  • Rubin A, Lemberger L, Dahir P. Physiologic disposition of pergolide. Clinical Pharmacology and Therapeutics 30: 258–265, 1981

    Article  PubMed  CAS  Google Scholar 

  • Saarinen A, Myllyla VV, Tokola O, Hokkanen E. Effect of a slow-release preparation of levodopa on Parkinson’s disease in combination with a peripheral decarboxylase inhibitor. Acta Neurologica Scandinavica 57: 340–349, 1978

    Google Scholar 

  • Sandler M, Johnson RD, Ruthven CRJ, Reid JL, Calne DB. Transamination is a major pathway of 1-dopa metabolism following peripheral decarboxylase inhibition. Nature 247: 364–366, 1974

    Article  PubMed  CAS  Google Scholar 

  • Sasahara K, Nitani T, Habara TM, Morioka T, Nakajima E. Dosage form design for improvement of bioavailability of levodopa II: bioavailability of marketed levodopa preparations in dogs and parkinsonian patients. Journal of Pharmaceutical Sciences 69: 261–265, 1980a

    Article  PubMed  CAS  Google Scholar 

  • Sasahara K, Nitani T, Habara TM, Morioka T, Nakajima E. Dosage form design for improvement of bioavailability of levodopa III: Influence of dose on pharmacokinetic behavior of levodopa in dogs and parkinsonian patients. Journal of Pharmaceutical Sciences 69: 1374–1378, 1980b

    Article  PubMed  CAS  Google Scholar 

  • Sasahara K, Nitani T, Habara TM, Morioka T, Nakajima E. Dosage form design for improvement of bioavailability of levodopa IV: possible causes of low bioavailability of oral levodopa in dogs. Journal of Pharmaceutical Sciences 70: 730–733, 1981a

    Article  PubMed  CAS  Google Scholar 

  • Sasahara K, Nitani T, Habara TM, Morioka T, Nakajima E. Dosage form design for improvement of bioavailability of levodopa V: absorption and metabolism of levodopa in intestinal segments of dogs. Journal of Pharmaceutical Sciences 70: 1157–1160, 1981b

    Article  PubMed  CAS  Google Scholar 

  • Schacter M, Marsden CD, Parkes JD, Jenner P, Testa B. Deprenyl in the management of response fluctuations in patients with Parkinson’s disease on levodopa. Journal of Neurology, Neurosurgery and Psychiatry 43: 1016–1021, 1980

    Article  Google Scholar 

  • Schran HF, Bhuta SI, Schwartz HJ, Thorner MO. The pharmacokinetics of bromocriptine in man. In Goldstein et al. (Eds) Ergot compounds and brain function: neuroendocrine and neuropsychiatric aspects, pp. 125–139, Raven Press, New York, 1980

    Google Scholar 

  • Schwab RS, Chaftez ME. Kemadrin in the treatment of Parkinsonism. Neurology 5: 273–277, 1955

    Article  PubMed  CAS  Google Scholar 

  • Schwab RS, England AC, Poskanzer DC, Young RR. Amantadine in the treatment of Parkinson’s disease. Journal of the American Medical Association 208: 1168–1170, 1969

    Article  PubMed  CAS  Google Scholar 

  • Schwartz DE, Brandt R. Pharmacokinetic studies of the decarboxylase inhibitor benserazide in animals and man. Arzneimittel-Forschung 28: 302–307, 1978

    PubMed  CAS  Google Scholar 

  • Schwartz DE, Jordan JC, Ziegler WH. Pharmacokinetics of the decarboxylase inhibitor, benserazide, in man; its tissue distribution in the rat. European Journal of Clinical Pharmacology 7: 39–45, 1974

    Article  PubMed  CAS  Google Scholar 

  • Sharpless NS, Muenter MD, Tyce GM. 3-Methoxy-4-hydroxyphenylalanine (3-O-methyldopa) in plasma during oral L-dopa therapy of patients with Parkinson’s disease. Clinica Chimica Acta 37: 359–369, 1972

    Article  CAS  Google Scholar 

  • Shoulson I, Glaubiger GA, Chase TN. ‘On-off’ response: clinical and biochemical correlations during oral and intravenous levodopa administration in Parkinsonian patients. Neurology 25: 1144–1148, 1975

    Article  PubMed  CAS  Google Scholar 

  • Soung LS, Ing TS, Daugirdas JT, Wu MJ, Gandhi VC, et al. Amantadine hydrochloride pharmacokinetics in hemodialysis patients. Annals of Internal Medicine 93: 46–49, 1980

    PubMed  CAS  Google Scholar 

  • Spector R, Choudry AK, Chiang CK, Goldberg MJ, Ghoneim MM. Diphenhydramine in Orientals and Caucasians. Clinical Pharmacology and Therapeutics 28: 229–234, 1980

    Article  PubMed  CAS  Google Scholar 

  • Stewart RM, Miller S, Gunder M. Urinary 5-S-cysteinyldopa in Parkinsonism after dopa and carbidopa. Acta Dermatologica 63: 97–101, 1983

    CAS  Google Scholar 

  • Stock B, Spiteller G. The metabolism of antiparkinson drugs: an example of competitive hydroxylation. Arzneimittel-Forschung 29: 610–615, 1979

    PubMed  CAS  Google Scholar 

  • Strang RR. Kemadrin in the treatment of Parkinsonism: a double-blind and one-year follow-up study. Current Medicine and Drugs 5: 27–32, 1965

    Google Scholar 

  • Sweet RD, McDowell FH. Plasma dopa concentrations and the ‘On-off’ effect after chronic treatment of Parkinson’s disease. Neurology 24: 953–956, 1974

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Oshima T, Hayashi S, Ishibashi C, Kobayashi S. Enhancement of the pharmacological action of 3,4-dihydroxy-1-phenylalanine (L-dopa) and reduction of dopa decarboxylase activity in rat liver after chronic treatment with L-dopa. European Journal of Pharmacology 22: 360–362, 1973

    Article  PubMed  CAS  Google Scholar 

  • Tate SS, Sweet R, McDowell FH, Meister A. Decrease of the 3,4-dihydroxyphenylalanine (dopa) decarboxylase activities in human erythrocytes and mouse tissues after administration of dopa. Proceedings of the National Academy of Sciences (USA) 68: 2121–2123, 1971

    Article  CAS  Google Scholar 

  • Timberlake W, Schwab RS. Experimental preparation W-483 in the treatment of Parkinson’s disease. New England Journal of Medicine 247: 98, 1952

    Article  PubMed  CAS  Google Scholar 

  • Tissot R, Bartholini G, Pletscher A. Drug-induced changes of extracerebral dopa metabolism in man. Archives of Neurology 20: 187–190, 1969

    Article  PubMed  CAS  Google Scholar 

  • Tolosa ES, Martin WE, Cohen HP, Jacobson RL. Pattern of clinical response and plasma dopa levels in Parkinson’s disease. Neurology 25: 177–183, 1975

    Article  PubMed  CAS  Google Scholar 

  • Tourtellotte W, Syndulko R, Potvin AR, Hirsch SB, Potvin JH. Increased ratio of carbidopa to levodopa in treatment of Parkinson’s disease. Archives of Neurology 37: 723–726, 1980

    Article  PubMed  CAS  Google Scholar 

  • Tune L, Coyle JT. Serum levels of anticholinergic drugs in treatment of acute extrapyramidal side effects. Archives of General Psychiatry 37: 293–297, 1980

    Article  PubMed  CAS  Google Scholar 

  • Vickers S, Stuart EK, Bianchine JR, Hucker HB, Jaffe ME, et al. Metabolism of carbidopa [L-(−)-α-hydrazino-3,4-dihydroxy-α-methyl-hydrocinnamic acid monohydrate], an aromatic amino acid decarboxylase inhibitor, in the rat, dog, rhesus monkey, and man. Drug Metabolism and Disposition 2: 9–22, 1974

    PubMed  CAS  Google Scholar 

  • Wade DN, Mearrick PT, Morris JL. Active transport of L-dopa in the intestine. Nature 242: 463–465, 1973

    Article  PubMed  CAS  Google Scholar 

  • Wade DN, Mearrick PT, Birkett DJ, Morris J. Variability of L-dopa absorption in man. Australian and New Zealand Journal of Medicine 4: 138–143, 1974

    Article  PubMed  CAS  Google Scholar 

  • Wade LA, Katzman R. Synthetic amino acids and the nature of L-dopa transport at the blood-brain barrier. Journal of Neurochemistry 25: 837–842, 1975a

    Article  PubMed  CAS  Google Scholar 

  • Wade LA, Katzman R. 3-O-Methyldopa uptake and inhibition of L-dopa at the blood-brain barrier. Life Sciences 17: 131–136, 1975b

    Article  PubMed  CAS  Google Scholar 

  • Ward CD, Trombley IK, Calne DB, Kopin IJ. L-dopa decarboxylation in chronically treated patients. Neurology 34: 198–201, 1984

    Article  PubMed  CAS  Google Scholar 

  • Webster DD, Sawyer GT. The combined use of amantadine HCl and levodopa/carbidopa in Parkinson’s disease. Current Therapeutic Research 35: 1010–1013, 1984

    Google Scholar 

  • Weiner WJ, Klawans HL. Failure of cerebrospinal fluid homovanillic acid to predict levodopa response in Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry 36: 747–752, 1973

    Article  CAS  Google Scholar 

  • Weintraub ME, Van Woert MH. Reversal by levodopa of cholinergic hypersensitivity in Parkinson’s disease. New England Journal of Medicine 284: 412–415, 1971

    Article  PubMed  CAS  Google Scholar 

  • Whiteman PD, Fowle AS, Hamilton MJ, Peck AW, Bye A, et al. Pharmacokinetics and pharmacodynamics of procyclidine in man. European Journal of Clinical Pharmacology 28: 73–78, 1985

    Article  PubMed  CAS  Google Scholar 

  • Wilson TW, Rajput AH. Amantadine-dyazide interaction. Canadian Medical Association Journal 129: 974–975, 1983

    PubMed  CAS  Google Scholar 

  • Wu JM, Ing TS, Soung LS, Dougirdas JT, Hano JE, et al. Amantadine hydrochloride pharmacokinetics in patients with impaired renal function. Clinical Nephrology 17: 19–23, 1982

    PubMed  CAS  Google Scholar 

  • Yahr MD, Clough CG, Bergmann KJ. Cholinergic and dopaminergic mechanisms in Parkinson’s disease after long term levodopa administration. Lancet 2: 709–710, 1982

    Article  PubMed  CAS  Google Scholar 

  • Yahr MD, Duvoisin RC, Schear MJ, Barrett RE, Hoehn MM. Treatment of parkinsonism with levodopa. Archives of Neurology 21: 343–354, 1969

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cedarbaum, J.M. Clinical Pharmacokinetics of Anti-Parkinsonian Drugs. Clin-Pharmacokinet 13, 141–178 (1987). https://doi.org/10.2165/00003088-198713030-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-198713030-00002

Keywords

Navigation