Poziom katecholamin w ślinie podczas stresu egzaminacyjnego i wysiłku poznawczego

Autor

DOI:

https://doi.org/10.18778/1427-969X.19.05

Słowa kluczowe:

katecholaminy, dopamina, noradrenalina, adrenalina, biomarkery

Abstrakt

By ustalić przydatność katecholamin w ślinie do badania stresu, pobrano próbki od 30 studentów przed egzaminem oraz w dniu pozbawionym stresorów. Następnie aby zbadać wpływ wysiłku poznawczego na poziomy katecholamin, przebadano 31 ochotników, którzy uczestniczyli w dwóch spotkaniach poświęconych realizacji różnych testów poznawczych. Za pomocą HPLC-ED zmierzono poziomy noradrenaliny, dopaminy i adrenaliny w ślinie. W grupie przed egzaminem zaobserwowano wyłącznie obniżony poziom dopaminy w porównaniu do dnia nieobciążonego stresorami. W drugiej grupie wysiłek poznawczy wywołał podwyższenie poziomów wszystkich trzech katecholamin. Zważywszy na niejednoznaczne wyniki z dotychczasowych badań wydaje się, iż adrenalina i noradrenalina w ślinie mogą być stosowane jako markery aktywności współczulnej w badaniach psychologicznych.

Bibliografia

Åkerstedt T., Gillberg M., Hjemdahl P., Sigurdson K., Gustavsson I., Daleskog M., Pollare T. (1983). Comparison of urinary and plasma catecholamine responses to mental stress. Acta Physiologica Scandinavica, 117 (1), 19–26.
Google Scholar DOI: https://doi.org/10.1111/j.1748-1716.1983.tb07174.x

Amenta F., Ricci A., Tayebati S. K., Zaccheo D. (2001). The peripheral dopaminergic system: morphological analysis, functional and clinical applications. Italian journal of anatomy and embryology – Archivio italiano di anatomia ed embriologia, 107 (3), 145–167.
Google Scholar

Amin F., Friedhoff A. J. (1997). Plasma HVA as a Tool to Investigate Presynaptic Brain Dopaminergic Activity. [W:] F. Amin, A. J. Friedhoff (red.), Plasma HVA in Schizophrenia (s. 1–15). Washington: American Psychiatric Press.
Google Scholar

Anno N. (2006). Changes of mental stress reactivity during menstrual cycle. Journal of Kurume Medical Association, 69 (1), 14.
Google Scholar

Ansari T. L., Derakshan N. (2011). The neural correlates of cognitive effort in anxiety: Effects on processing efficiency. Biological Psychology, 86 (3), 337–348.
Google Scholar DOI: https://doi.org/10.1016/j.biopsycho.2010.12.013

Apfel B. A., Otte C., Inslicht S. S., McCaslin S. E., Henn-Haase C., Metzler T. J., Marmar C. R. (2011). Pretraumatic prolonged elevation of salivary MHPG predicts peritraumatic distress and symptoms of post-traumatic stress disorder. Journal of Psychiatric Research, 45 (6), 735–741.
Google Scholar DOI: https://doi.org/10.1016/j.jpsychires.2010.11.016

Aston-Jones G., Cohen J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Reviews Neuroscience, 28, 403–450.
Google Scholar DOI: https://doi.org/10.1146/annurev.neuro.28.061604.135709

Bamberger C. M., Schulte H. M., Chrousos G. P. (1996). Molecular determinants of glucocorticoid receptor function and tissue sensitivity to glucocorticoids. Endocrine Reviews, 17 (3), 245–261.
Google Scholar DOI: https://doi.org/10.1210/edrv-17-3-245

Bassett J. R., Marshall P. M., Spillane R. (1987). The physiological measurement of acute stress (public speaking) in bank employees. International Journal of Psychophysiology, 5 (4), 265–273.
Google Scholar DOI: https://doi.org/10.1016/0167-8760(87)90058-4

Berridge C. W. (2008). Noradrenergic modulation of arousal. Brain Research Reviews, 58 (1), 1–17.
Google Scholar DOI: https://doi.org/10.1016/j.brainresrev.2007.10.013

Berridge C. W., Foote S. L. (1991). Effects of locus coeruleus activation on electroencephalographic activity in neocortex and hippocampus. The Journal of Neuroscience, 11 (10), 3135–3145.
Google Scholar DOI: https://doi.org/10.1523/JNEUROSCI.11-10-03135.1991

Berridge C. W., Waterhouse B. D. (2003). The locus coeruleus – noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Research Reviews, 42 (1), 33–84.
Google Scholar DOI: https://doi.org/10.1016/S0165-0173(03)00143-7

Berthoud H. R., Neuhuber W. L. (2000). Functional and chemical anatomy of the afferent vagal system. Autonomic Neuroscience, 85 (1), 1–17.
Google Scholar DOI: https://doi.org/10.1016/S1566-0702(00)00215-0

Bezdjian S., Baker L. A., Lozano D. I., Raine A. (2009). Assessing inattention and impulsivity in children during the Go/NoGo task. The British Journal of Developmental Psychology, 27 (2), 365–83.
Google Scholar DOI: https://doi.org/10.1348/026151008X314919

Blennow K., Wallin A., Gottfries C. G., Karlsson I., Månsson J. E., Skoog I., Svennerholm L. (1993). Cerebrospinal fluid monoamine metabolites in 114 healthy individuals 18–88 years of age. European Neuropsychopharmacology, 3 (1), 55–61.
Google Scholar DOI: https://doi.org/10.1016/0924-977X(93)90295-W

Boyle S. H., Matson W. R., Velazquez E. J., Samad Z., Williams Jr R. B., Sharma S., Jiang W. (2014). Metabolomics analysis reveals insights into biochemical mechanisms of mental stress-induced left ventricular dysfunction. Metabolomics, 1–12.
Google Scholar DOI: https://doi.org/10.1007/s11306-014-0718-y

Cahill L., McGaugh J. L. (1998). Mechanisms of emotional arousal and lasting declarative memory. Trends in Neurosciences, 21 (7), 294–299.
Google Scholar DOI: https://doi.org/10.1016/S0166-2236(97)01214-9

Dieleman G. C., van der Ende J., Verhulst F. C., Huizink A. C. (2010). Perceived and physiological arousal during a stress task: Can they differentiate between anxiety and depression? Psychoneuroendocrinology, 35 (8), 1223–1234.
Google Scholar DOI: https://doi.org/10.1016/j.psyneuen.2010.02.012

Dolcos F., LaBar K. S., Cabeza R. (2004). Dissociable effects of arousal and valence on prefrontal activity indexing emotional evaluation and subsequent memory: An event-related fMRI study. Neuroimage, 23 (1), 64–74.
Google Scholar DOI: https://doi.org/10.1016/j.neuroimage.2004.05.015

Drebing C. J., Freedman R., Waldo M., Gerhardt G. A. (1989). Unconjugated methoxylated catecholamine metabolites in human saliva. Quantitation methodology and comparison with plasma levels. Biomedical chromatography, 3 (5), 217–220.
Google Scholar DOI: https://doi.org/10.1002/bmc.1130030509

Eisenhofer G., Kopin I. J., Goldstein D. S. (2004). Catecholamine metabolism: A contemporary view with implications for physiology and medicine. Pharmacological Reviews, 56 (3), 331–349.
Google Scholar DOI: https://doi.org/10.1124/pr.56.3.1

Fairclough S. H., Houston K. (2004). A metabolic measure of mental effort. Biological Psychology, 66 (2), 177–190.
Google Scholar DOI: https://doi.org/10.1016/j.biopsycho.2003.10.001

Fan J., McCandliss B. D., Fossella J., Flombaum J. I., Posner M. I. (2005). The activation of attentional networks. NeuroImage, 26 (2), 471–9.
Google Scholar DOI: https://doi.org/10.1016/j.neuroimage.2005.02.004

Fibiger W., Evans O., Singer G. (1986). Hormonal responses to a graded mental workload. European Journal of Applied Physiology and Occupational Physiology, 55 (4), 339–343.
Google Scholar DOI: https://doi.org/10.1007/BF00422730

Field T., Hernandez-Reif M., Diego M., Schanberg S., Kuhn C. (2005). Cortisol decreases and serotonin and dopamine increase following massage therapy. International Journal of Neuroscience, 115 (10), 1397–1413.
Google Scholar DOI: https://doi.org/10.1080/00207450590956459

Frankenhaeuser M., Dunne E., Lundberg U. (1976). Sex differences in sympathetic-adrenal medullary reactions induced by different stressors. Psychopharmacology, 47 (1), 1–5.
Google Scholar DOI: https://doi.org/10.1007/BF00428693

Frankenhaeuser M., von Wright M. R., Collins A., von Wright J., Sedvall G., Swahn C. G. (1978). Sex differences in psychoneuroendocrine reactions to examination stress. Psychosomatic Medicine, 40 (4), 334–343.
Google Scholar DOI: https://doi.org/10.1097/00006842-197806000-00006

Galatzer-Levy I. R., Steenkamp M. M., Brown A. D., Qian M., Inslicht S., Henn-Haase C., Otte C., Yehuda R., Neylan T. C., Marmar C. R. (2014). Cortisol response to an experimental stress paradigm prospectively predicts long-term distress and resilience trajectories in response to active police service. Journal of Psychiatric Research, 56, 36–42.
Google Scholar DOI: https://doi.org/10.1016/j.jpsychires.2014.04.020

Gerin W., Davidson K. W., Christenfeld N. J., Goyal T., Schwartz J. E. (2006). The role of angry rumination and distraction in blood pressure recovery from emotional arousal. Psychosomatic Medicine, 68 (1), 64–72.
Google Scholar DOI: https://doi.org/10.1097/01.psy.0000195747.12404.aa

Goldstein D. S. (2010). Catecholamines 101. Clinical Autonomic Research, 20 (6), 331–352.
Google Scholar DOI: https://doi.org/10.1007/s10286-010-0065-7

Gruen R. J., Ehrlich J., Silva R., Schweitzer J. W., Friedhoff A. J. (2000). Cognitive factors and stress-induced changes in catecholamine biochemistry. Psychiatry Research, 93, 55–61.
Google Scholar DOI: https://doi.org/10.1016/S0165-1781(99)00121-3

Hjemdahl P., Freyschuss U., Juhlin-Dannfelt A., Linde B. (1983). Differentiated sympathetic activation during mental stress evoked by the Stroop test. Acta Physiologica Scandinavica, 527, 25–29.
Google Scholar

Horiuchi S., Tsuda A., Okamura H., Yajima J., Steptoe A. (2010). Differential elicitation of the salivary 3-methoxy-4-hydroxyphenylglycol (MHPG) responses by mental stress testing. Japanese Journal of Behavioral Medicine, 16, 31–38.
Google Scholar

Howells F. M., Stein D. J., Russell V. A. (2010). Research perceived mental effort correlates with changes in tonic arousal during attentional tasks. Behavioral and Brain Functions, 6, 39.
Google Scholar DOI: https://doi.org/10.1186/1744-9081-6-39

Hou Y. P., Manns I. D., Jones B. E. (2002). Immunostaining of cholinergic pontomesencephalic neurons for α1 versus α2 adrenergic receptors suggests different sleep-wake state activities and roles. Neuroscience, 114 (3), 517–521.
Google Scholar DOI: https://doi.org/10.1016/S0306-4522(02)00340-8

Januszewicz W., Sznajderman M., Wocial B., Feltynowski T., Klonowicz T. (1979). The effect of mental stress on catecholamines, their metabolites and plasma renin activity in patients with essential hypertension and in healthy subjects. Clinical Science, 57 (5), 229–231.
Google Scholar DOI: https://doi.org/10.1042/cs057229s

Jennings J. R., Nebes R., Brock K. (1988). Memory retrieval in noise and psychophysiological response in the young and old. Psychophysiology, 25 (6), 633–644.
Google Scholar DOI: https://doi.org/10.1111/j.1469-8986.1988.tb01901.x

Jörgensen L. S., Bönlökke L., Ristensen N. J. (1985). Plasma adrenaline and noradrenaline during mental stress and isometric exercise in man. The role of arterial sampling. Scandinavian Journal of Clinical and Laboratory Investigation, 45 (5), 447–452.
Google Scholar DOI: https://doi.org/10.3109/00365518509155242

Kennedy B., Dillon E., Mills P. J., Ziegler M. G. (2001). Catecholamines in human saliva. Life Sciences, 69 (1), 87–99.
Google Scholar DOI: https://doi.org/10.1016/S0024-3205(01)01111-0

Kirschbaum C., Klauer T., Filipp S. H., Hellhammer D. H. (1995). Sex-specific effects of social support on cortisol and subjective responses to acute psychological stress. Psychosomatic Medicine, 57 (1), 23–31.
Google Scholar DOI: https://doi.org/10.1097/00006842-199501000-00004

Kuchel O. G., Kuchel G. A. (1991). Peripheral dopamine in pathophysiology of hypertension. Interaction with aging and lifestyle. Hypertension, 18 (6), 709–721.
Google Scholar DOI: https://doi.org/10.1161/01.HYP.18.6.709

Lake C. R., Chernow B., Feuerstein G., Goldstein D. S., Ziegler M. G. (1984). The sympathetic nervous system in man: Its evaluation and the measurement of plasma NE. Frontiers of Clinical Neuroscience, 2, 1–26.
Google Scholar DOI: https://doi.org/10.1016/S0261-9881(21)00173-7

LeBlanc J., Ducharme M. B. (2007). Plasma dopamine and noradrenaline variations in response to stress. Physiology and Behavior, 91 (2), 208–211.
Google Scholar DOI: https://doi.org/10.1016/j.physbeh.2007.02.011

Leistad R. B., Stovner L. J., White L. R., Nilsen K. B., Westgaard R. H., Sand T. (2007). Noradrenaline and cortisol changes in response to low-grade cognitive stress differ in migraine and tension-type headache. The Journal of Headache and Pain, 8 (3), 157–166.
Google Scholar DOI: https://doi.org/10.1007/s10194-007-0384-9

Li G. Y., Ueki H., Kawashima T., Sugataka K., Muraoka T., Yamada S. (2004). Involvement of the noradrenergic system in performance on a continuous task requiring effortful attention. Neuropsychobiology, 50 (4), 336–340.
Google Scholar DOI: https://doi.org/10.1159/000080962

McClelland D. C., Ross G., Patel V. (1985). The effect of an academic examination on salivary norepinephrine and immunoglobulin levels. Journal of Human Stress, 11, 52–59.
Google Scholar DOI: https://doi.org/10.1080/0097840X.1985.9936739

McClelland D. C., Patel V., Stier D., Brown D. (1987). The relationship of affiliative arousal to dopamine release. Motivation and Emotion, 11 (1), 51–66.
Google Scholar DOI: https://doi.org/10.1007/BF00992213

Mitome M., Shirakawa T., Kikuiri T., Oguchi H. (1997). Salivary catecholamine assay for assessing anxiety in pediatric dental patients. The Journal of Clinical Pediatric Dentistry, 21, 255–259.
Google Scholar

Morilak D. A., Barrera G., Echevarria D. J., Garcia A. S., Hernandez A., Ma S., Petre C. O. (2005). Role of brain norepinephrine in the behavioral response to stress. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29 (8), 1214–1224.
Google Scholar DOI: https://doi.org/10.1016/j.pnpbp.2005.08.007

Mueller S. T., Piper B. J. (2014). The Psychology Experiment Building Language (PEBL) and PEBL Test Battery. Journal of Neuroscience Methods, 222, 250–259.
Google Scholar DOI: https://doi.org/10.1016/j.jneumeth.2013.10.024

Nagy O., Kelemen O., Benedek G., Myers C. E., Shohamy D., Gluck M. A., Kéri S. (2007). Dopaminergic contribution to cognitive sequence learning. Journal of Neural Transmission, 114 (5), 607–612.
Google Scholar DOI: https://doi.org/10.1007/s00702-007-0654-3

Nelson R. J. (2005). An introduction to behavioral endocrinology. Sunderland: Sinauer Associates.
Google Scholar

Ng V., Koh D., Chia S. E. (2003). Examination stress, salivary cortisol, and academic performance. Psychological Reports, 93 (3f), 1133–1134.
Google Scholar DOI: https://doi.org/10.2466/pr0.2003.93.3f.1133

Okamura H., Tsuda A., Yajima J., Mark H., Horiuchi S., Toyoshima N., Matsuishi T. (2010). Short sleeping time and psychobiological responses to acute stress. International Journal of Psychophysiology, 78 (3), 209–214.
Google Scholar DOI: https://doi.org/10.1016/j.ijpsycho.2010.07.010

Page M. E., Berridge C. W., Foote S. L., Valentino R. J. (1993). Corticotropin-releasing factor in the locus coeruleus mediates EEG activation associated with hypotensive stress. Neuroscience Letters, 164 (1), 81–84.
Google Scholar DOI: https://doi.org/10.1016/0304-3940(93)90862-F

Peters M. L., Godaert G. L., Ballieux R. E., van Vliet M., Willemsen J. J., Sweep F. C., Heijnen C. J. (1998). Cardiovascular and endocrine responses to experimental stress: Effects of mental effort and controllability. Psychoneuroendocrinology, 23 (1), 1–17.
Google Scholar DOI: https://doi.org/10.1016/S0306-4530(97)00082-6

Revelle W., Loftus D. A. (2014). The implication of arousal effects for the study of affect and memory. [W:] Christianson S. A. (red.), The Handbook of Emotion and Memory: Research and Theory (s. 113–141). New York: Psychology Press.
Google Scholar

Rivier C., Vale W. (1983). Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin. Nature, 305, 325–327.
Google Scholar DOI: https://doi.org/10.1038/305325a0

Rudnicki K., Rutkowska A., Wieczorek M. (2015). Salivary 3-methoxy-4-hydroxyphenylglycol (MHPG) elevation after different types of cognitive effort. Manuskrypt złożony do publikacji w Applied Psychophysiology and Biofeedback.
Google Scholar

Samuels E. R., Szabadi E. (2008). Functional neuroanatomy of the noradrenergic locus coeruleus: Its roles in the regulation of arousal and autonomic function part I: Principles of functional organisation. Current Neuropharmacology, 6 (3), 235–53.
Google Scholar DOI: https://doi.org/10.2174/157015908785777229

Sara S. J., Hervé-Minvielle A. (1995). Inhibitory influence of frontal cortex on locus coeruleus neurons. Proceedings of the National Academy of Sciences of the United States of America, 92, 6032–6036.
Google Scholar DOI: https://doi.org/10.1073/pnas.92.13.6032

Schommer N. C., Hellhammer D. H., Kirschbaum C. (2003). Dissociation between reactivity of the hypothalamus-pituitary-adrenal axis and the sympathetic-adrenal-medullary system to repeated psychosocial stress. Psychosomatic Medicine, 65 (3), 450–460.
Google Scholar DOI: https://doi.org/10.1097/01.PSY.0000035721.12441.17

Schwab K. O., Heubel G., Bartels H. (1992). Free epinephrine, norepinephrine and dopamine in saliva and plasma of healthy adults. European Journal of Clinical Chemistry and Clinical Biochemistry: Journal of the Forum of European Clinical Chemistry Societies, 30 (9), 541–544.
Google Scholar

Smith S. M., Vale W. W. (2006). The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues in Clinical Neuroscience, 8 (4), 383–391.
Google Scholar DOI: https://doi.org/10.31887/DCNS.2006.8.4/ssmith

Sothmann M. S., Hart B. A., Horn T. S., Gustafson A. B. (1988). Plasma catecholamine and performance associations during psychological stress: Evidence for peripheral noradrenergic involvement with an attention-demanding task. Human Performance, 1 (1), 31–43.
Google Scholar DOI: https://doi.org/10.1207/s15327043hup0101_2

Sugimoto K., Kanai A., Shoji N. (2009). The effectiveness of the Uchida-Kraepelin test for psychological stress: An analysis of plasma and salivary stress substances. BioPsychoSocial Medicine, 3 (5).
Google Scholar DOI: https://doi.org/10.1186/1751-0759-3-5

Sumiyoshi T., Yotsutsuji T., Kurachi M., Itoh H., Kurokawa K., Saitoh O. (1998). Effect of mental stress on plasma homovanillic acid in healthy human subjects. Neuropsychopharmacology, 19 (1), 70–73.
Google Scholar DOI: https://doi.org/10.1016/S0893-133X(98)00005-0

Szymczak W. (2008). Podstawy statystyki dla psychologów: podręcznik akademicki. Warszawa: Centrum Doradztwa i Informacji Difin.
Google Scholar

Thayer R. E. (1989). The Biopsychology of Mood and Arousal. New York: Oxford University Press.
Google Scholar

Thibodeau M. A., Gómez-Pérez L., Asmundson G. J. (2012). Objective and perceived arousal during performance of tasks with elements of social threat: The influence of anxiety sensitivity. Journal of Behavior Therapy and Experimental Psychiatry, 43 (3), 967–974.
Google Scholar DOI: https://doi.org/10.1016/j.jbtep.2012.03.001

Tsuda A., Yajima J., Tsuda S. (2000). Experimental psychological approaches to stress. Japanese Journal of Stress Science, 15, 184–191.
Google Scholar

Urry H. L., van Reekum C. M., Johnstone T., Davidson R. J. (2009). Individual differences in some (but not all) medial prefrontal regions reflect cognitive demand while regulating unpleasant emotion. Neuroimage, 47 (3), 852–863.
Google Scholar DOI: https://doi.org/10.1016/j.neuroimage.2009.05.069

Weiner H. (1992). Perturbing the organism: The biology of stressful experience. Chicago: University of Chicago Press.
Google Scholar

Westphal N. J., Seasholtz A. F. (2006). CRH-BP: the regulation and function of a phylogenetically conserved binding protein. Frontiers in Bioscience, 11, 1878–1891.
Google Scholar DOI: https://doi.org/10.2741/1931

Wilkinson D. J., Thompson J. M., Lambert G. W., Jennings G. L., Schwarz R. G., Jefferys D., Esler M. D. (1998). Sympathetic activity in patients with panic disorder at rest, under laboratory mental stress, and during panic attacks. Archives of General Psychiatry, 55 (6), 511–520.
Google Scholar DOI: https://doi.org/10.1001/archpsyc.55.6.511

Valentino R. J., Page M., Van Bockstaele E., Aston-Jones G. (1992). Corticotropin-releasing factor innervation of the locus coeruleus region: Distribution of fibers and sources of input. Neuroscience, 48 (3), 689–705.
Google Scholar DOI: https://doi.org/10.1016/0306-4522(92)90412-U

Yajima J., Tsuda A., Kuwahata T., Yamada S. (2002). Relationship between psychoneuroimmunological responses induced by mental stress testing and general health state in human volunteers. Journal of Behavioral Medicine, 8 (1), 17–22.
Google Scholar

Yamamoto T., Nishimura N., Tamiya S. (2010). MHPG measurement in saliva as an indicator of CNS activity. Clinical Neurophysiology, 121.
Google Scholar DOI: https://doi.org/10.1016/S1388-2457(10)60654-2

Yang R. K., Yehuda R., Holland D. D., Knott P. J. (1997). Relationship between 3-methoxy-4-hydroxyphenylglycol and homovanillic acid in saliva and plasma of healthy volunteers. Biological Psychiatry, 42 (9), 821–826.
Google Scholar DOI: https://doi.org/10.1016/S0006-3223(97)00055-3

Zouhal H., Jacob C., Delamarche P., Gratas-Delamarche A. (2008). Catecholamines and the effects of exercise, training and gender. Sports Medicine, 38 (5), 401–423.
Google Scholar DOI: https://doi.org/10.2165/00007256-200838050-00004

Pobrania

Opublikowane

2015-01-01

Jak cytować

Rudnicki, K., Rutkowska, A., & Wieczorek, M. (2015). Poziom katecholamin w ślinie podczas stresu egzaminacyjnego i wysiłku poznawczego. Acta Universitatis Lodziensis. Folia Psychologica, (19), 89–107. https://doi.org/10.18778/1427-969X.19.05

Numer

Dział

Articles