Skip to main content
Log in

The oxygen behavior in the carbon nanostructures synthesized by CVD with recycling precursor

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

In this work, the recycled fraction of methanol from the rum distillation has been used to synthesize carbon nanostructures. The synthesis temperature variation results in different structures, where the oxygen, derived from the methanol molecule, plays an important role in the nanostructures surface properties. The synthesis was carried out by chemical vapor deposition at 750, 800 y 850 °C. The characteristic peaks of the carbon nanostructures were noted by the Raman analysis and the functional groups were confirmed by the Fourier transform infrared spectroscopy. The synthesis of carbon nanostructures by CVD from recycled methanol allows oxygen to be incorporated on its surface.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. T. Maruyama, Handbook of Carbon-Based Nanomaterials, ed. By S. Thomas, C. Sarathchandran, S.A. Ilangovan, J. C. Moreno (Elsevier, Amsterdam, 2021), pp. 299–319. https://doi.org/10.1016/B978-0-12-821996-6.00009-9

  2. D. L. García Ruiz, F. G. Granados Martínez, C. J. Gutiérrez García, J. M. Ambriz Torres, J. de J. Contreras Navarrete, L. Domratcheva Lvova, Handbook of Greener Synthesis of Nanomaterials and Compounds, ed. By B. Kharisov, O. Kharissova (Elsevier, Amsterdam, 2021), pp 273–314 https://doi.org/10.1016/C2019-0-03121-4

  3. J. Deng, Y. You, V. Sahajwalla, R.K. Joshi, Carbon (2016). https://doi.org/10.1016/j.carbon.2015.09.033

    Article  Google Scholar 

  4. N. A. Fathy, A. H. Basta, V. F. Lotfy, Novel trends for synthesis of carbon nanostructures from agricultural wastes, ed. By K. A. Abd-Elsalam (Carbon Nanomaterials for Agri-Food and Environmental Applications, Elsevier, Amsterdam, 2020), pp. 59–74. https://doi.org/10.1016/B978-0-12-819786-8.00004-9

  5. M. Kumar, Y. Ando, J. Nanosci. Nanotechnol. (2010). https://doi.org/10.1166/jnn.2010.2939

    Article  Google Scholar 

  6. J.L. Ignacio-De la Cruz et al., MRS Adv. (2022). https://doi.org/10.1557/s43580-022-00372-6

    Article  Google Scholar 

  7. R.J. Andrews, C.F. Smith, A.J. Alexander, Carbon (2006). https://doi.org/10.1016/j.carbon.2005.07.025

    Article  Google Scholar 

  8. A.K. Chatterjee, M. Sharon, R. Banerjee, M. Neumann-Spallart, Electrochim. Acta (2003). https://doi.org/10.1016/S0013-4686(03)00427-4

    Article  Google Scholar 

  9. P. Ghosh, R.A. Afre, T. Soga, T. Jimbo, Mater. Lett. (2007). https://doi.org/10.1016/j.matlet.2006.12.030

    Article  Google Scholar 

  10. S. Paul, S.K. Samdarshi, New Carbon Mater. (2011). https://doi.org/10.1016/S1872-5805(11)60068-1

    Article  Google Scholar 

  11. A.B. Suriani, A.A. Azira, S.F. Nik, R.M. Nor, M. Rusop, Mater. Lett. (2009). https://doi.org/10.1016/j.matlet.2009.09.048

    Article  Google Scholar 

  12. R. Rafiee, R. Pourazizi, Comput. Mater. Sci. (2015). https://doi.org/10.1016/j.commatsci.2014.03.056

    Article  Google Scholar 

  13. A. Hirsch, O. Vostrowsky, Functionalization of Carbon Nanotubes, ed. By A.D. Schlüter (Springer, Berlin, 2005), pp. 193–237. https://doi.org/10.1007/b98169

  14. P.C. Ma, N.A. Siddiqui, G. Marom, J.K. Kim, Compos. Part A Appl. Sci. Manuf. (2010). https://doi.org/10.1016/j.compositesa.2010.07.003

    Article  Google Scholar 

  15. S. Rathinavel, K. Priyadharshini, D. Panda, Mater. Sci. Eng. B (2021). https://doi.org/10.1016/j.mseb.2021.115095

    Article  Google Scholar 

  16. R.K. Singh et al., ACS Appl. Mater. Interfaces (2014). https://doi.org/10.1021/am4056936

    Article  Google Scholar 

  17. F.G. Granados-Martínez et al., J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-02968-w

    Article  Google Scholar 

  18. Z. Zhao, Z. Yang, Y. Hu, J. Li, X. Fan, Appl. Surf. Sci. (2013). https://doi.org/10.1016/j.apsusc.2013.03.119

    Article  Google Scholar 

  19. F. Arcudi, L. Ďordević, M. Prato, Acc. Chem. Res. (2019). https://doi.org/10.1021/acs.accounts.9b00249

    Article  Google Scholar 

  20. A. Jorio, R. Saito, J. Appl. Phys. (2021). https://doi.org/10.1063/5.0030809

    Article  Google Scholar 

  21. Y.C. Choi, K.I. Min, M.S. Jeong, J. Nanomater. (2013). https://doi.org/10.1155/2013/615915

    Article  Google Scholar 

  22. A.C. Ferrari, J. Robertson, Phys. Rev. B (2000). https://doi.org/10.1103/PhysRevB.61.14095

    Article  Google Scholar 

Download references

Acknowledgments

Acknowledgements to the CIC of the UMSNH, ENES UNAM Campus Morelia, and CONAHCYT for Dr. Granados-Martínez (CVU 488498) postdoctoral scholarship and M.S. Cintya Arroyo-Arroyo (963851) PhD scholarship.

Funding

No applicable.

Author information

Authors and Affiliations

Authors

Contributions

CA-A: Research, writing, collecting data, and analysis. FGG-M: Research, analysis design and performance, review, and editing. OH-C: Analysis tools contribution. MRC-M: Analysis tools contribution. LD-L: Funding acquisition (lead), analysis design and performance, review, and editing.

Corresponding author

Correspondence to Lada Domratcheva-Lvova.

Ethics declarations

Competing interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

No applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arroyo-Arroyo, C., Granados-Martínez, F.G., Hernandez-Cristobal, O. et al. The oxygen behavior in the carbon nanostructures synthesized by CVD with recycling precursor. MRS Advances (2023). https://doi.org/10.1557/s43580-023-00746-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43580-023-00746-4

Navigation