Skip to main content
Log in

Materials Development for Thermally-Assisted Magnetic Recording Media

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We have carried out a combined experimental and computer simulation study to specify and identify candidate films to support high areal density, thermally-assisted magnetic recording. The motivation of this work is to utilize the enhanced writability of very high coercivity materials that thermal assistance can provide. Media with high coercivity (and anisotropy Ku) are known to be essential to achieve a sufficiently high ratio of KuV/kBT necessary to maintain magnetic stability at temperature T in media switching units (grains; single domains) of volume V. Nominally, we expect V ∝ D−3/2, where D is the medium bit density per unit area in recording. A micromagnetic recording simulation tool with a capability of representing realistic grain size distributions, temperature-dependent magnetic properties, and spatially-varying imposed temperature distributions was employed to study the interplay of thermal and magnetic field gradients in the recording process. In addition, a simple LLG-based thermomagnetic switching model supplemented the micromagnetics model. We fabricated improved Co/X multilayer media for recording evaluation, and performed standard materials characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dieter Weller and Andreas Moser, IEEE Trans. Magn. 35, 4423 (1999).

    Article  CAS  Google Scholar 

  2. S.H. Charap, Pu-Ling Lu, and Yanjun He, IEEE Trans. Magn. 33, 978 (1997).

    Article  Google Scholar 

  3. Roger Wood, IEEE Trans. Magn. 36, 36 (2000).

    Article  Google Scholar 

  4. D. Weller, et al, IEEE Trans. Magn. 36, 10 (2000).

    Article  CAS  Google Scholar 

  5. H. Saga, et al, Proc. MORIS 1999, J. Magn. Soc. Jpn. 23, Suppl. S1, 225 (1999); Nemoto et al, ibid, p.229; H. Katayama, et al, ibid, p.233 (1999)

    Google Scholar 

  6. H. Katayama, et al, IEEE Trans. Magn. 36, 195 (2000).

    Article  CAS  Google Scholar 

  7. Wenbin Peng, et al, Intermag Conference 2000, to be published in IEEE Trans. Magn.

    Google Scholar 

  8. H.N. Bertram and M. Williams, IEEE Trans. Magn. 36, 4 (2000).

    Article  Google Scholar 

  9. T.W. McDaniel, J. Magn. Soc. Jpn. 23, Suppl. No. S1, 251 (1999).

    Google Scholar 

  10. M. Alex, A. Tselikov, T. McDaniel, N. Deeman, T. Valet, and D. Chen, Intermag Conference 2001 paper HC-01, to be published in IEEE Trans. Magn.

    Google Scholar 

  11. Euxine Technologies, Advanced Recording Model (ARM), Broomfield, CO 80020 USA

  12. Jaap J.M. Ruigrok, Proc. MORIS / APDSC 2000, Nagoya, Japan; to be published in J. Magn. Soc. Japan.

    Google Scholar 

  13. Kazuhiro Ouchi and Naoki Honda, IEEE Trans. Magn. 36, 16 (2000).

    Article  CAS  Google Scholar 

  14. M. Alex, T. Valet, T. McDaniel, and C. Brucker, MORIS / APDSC 2000, Nagoya, Japan; to be published in J. Magn. Soc. Jpn.

    Google Scholar 

  15. C. Brucker, “Magneto-Optical Thin Film Recording Materials in Practice, ” Handbook of Magneto- Optical Data Recording, ed. T.W. McDaniel and R.H. Victora, (Noyes, 1997) pp. 279–361.

    Google Scholar 

  16. K.B. Klaassen and J.C.L. van Peppen, Intermag Conference 2001 paper EA-06, to be published in IEEE Trans. Magn.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brucker, C.F., McDaniel, T.W. Materials Development for Thermally-Assisted Magnetic Recording Media. MRS Online Proceedings Library 674, 23 (2001). https://doi.org/10.1557/PROC-674-V2.3

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-674-V2.3

Navigation