Skip to main content
Log in

A study of micropyretic reactions in the Mo–Si–Al ternary system

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Micropyretic synthesis technique employs self-sustaining exothermic (combustion) reactions for the preparation of various ceramic, intermetallic, and composite materials. In the present work, the combustion reactions of Mo and Si with Al additions have been systematically studied. The atomic mixtures of the reactant powders are chosen to be Mo + (2 − x)Si + xAl with x = 0−0.4. In comparison with the Mo + 2Si reaction which leads to the formation of MoSi2, the substitution of Al for Si decreases the sample ignition temperature, but increases the intensity of the combustion reactions. In addition, the substitution of Al for Si results in the formation of a ternary intermetallic phase, called molybdenum alumino-silicide Mo(Si, Al)2, in the synthesized product. When the content of Al in the reactant mixtures reaches 0.4, nearly single phase Mo(Si, Al)2 is obtained and no MoSi2 is detected in the reaction product. These influences are analyzed by using x-ray diffraction (XRD), scanning electron microscopy (SEM), and differential thermal analysis (DTA). The effect of Al additions on the reaction mechanism is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. A. Munir and U. Anselmi-Tamburini, Mater. Sci. Reports 3, 277 (1989).

    Article  CAS  Google Scholar 

  2. A. G. Merzhanov, in Combustion and Plasma Synthesis of High-Temperature Materials, edited by Z.A. Munir and J.B. Holt (VCH Publishers, New York, 1990), p. 1.

  3. H. C. Yi and J. J. Moore, J. Mater. Sci. 25, 1159 (1990).

    Article  CAS  Google Scholar 

  4. M. Fu and J. A. Sekhar, Key Engineering Materials 108–110, 19 (1995).

    Article  Google Scholar 

  5. A. Bose, B. Moore, R.M. German, and N. S. Stoloff, JOM 40 (9), 14 (1988).

    Article  CAS  Google Scholar 

  6. H. P. Li, S. Bhaduri, and J. A. Sekhar, Metall. Trans. A 23A, 251 (1992).

    Article  CAS  Google Scholar 

  7. H. P. Li and JA. Sekhar, J. Mater. Res. 8, 2515 (1993).

    Article  CAS  Google Scholar 

  8. M. G. Lakshmikantha, A. Bhattacharya, and J. A. Sekhar, Metall. Trans. A 23A, 23 (1992).

    Article  CAS  Google Scholar 

  9. M. G. Lakshmikantha and J. A. Sekhar, Metall. Trans. A 24A, 617 (1993).

    Article  CAS  Google Scholar 

  10. M. G. Lakshmikantha and J.A. Sekhar, J. Am. Ceram. Soc. 77 (1), 202 (1994).

    Article  CAS  Google Scholar 

  11. C. T. Ho and J. A. Sekhar, in High Temperature Ordered Inter-metallic Alloys IV, edited by L. A. Johnson, D. P. Pope, and J.O. Stiegler (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), p. 1057.

  12. J. A. Sekhar, A. K. Bhattacharya, and H. P. Li, U.S. Patent 5 110 688 (1992).

  13. H. P. Li and J.A. Sekhar, in Advanced Synthesis of Engineered Structural Materials, edited by J.J. Moore, E. J. Lavernia, and F. H. Froes (ASM INTERNATIONAL, Materials Park, OH, 1993), p. 25.

  14. H. P. Li and J. A. Sekhar, Mater. Sci. Eng. A160, 221 (1993).

    Article  CAS  Google Scholar 

  15. J. A. Sekhar, S. Bhaduri, H. P. Li, and N. S. Canarslan, U.S. Patent 5 188 678 (1993).

  16. J. Subrahmanyam and R. Mohan Rao, Mater. Sci. Eng. A183, 205 (1994).

    Article  Google Scholar 

  17. A. R. Sarkisyan, S. K. Dolukhanyan, I. P. Borovinskaya, and A. G. Merzhanov, Combust. Explos. Shock Waves 14, 310 (1978).

    Article  Google Scholar 

  18. S. Zhang and Z. A. Munir, J. Mater. Sci. 26, 3685 (1991).

    Article  CAS  Google Scholar 

  19. S. C. Deevi, J. Mater. Sci. 26, 3343 (1991).

    Article  CAS  Google Scholar 

  20. V. N. Bloshenko, V. A. Bokii, and I.P. Borovinskaya, Combust. Explos. Shock Waves 21, 202 (1985).

    Article  Google Scholar 

  21. V. G. Kayuk, M.A. Kuzenkova, S.K. Dolukhanyan, and A.R. Sarkisyan, Sov. Powder Metall. Met. Ceram. 188, 588 (1978).

    Article  Google Scholar 

  22. MHI Element Handbook (1996), Version 6.

  23. H. H. Hausner, Coatings of High-Temperature Materials (Plenum Press, New York, 1966).

    Book  Google Scholar 

  24. S. P. Murarka, Silicides for VLSI Applications (Academic Press, New York, 1983).

    Google Scholar 

  25. A. K. Vasudevan and J.J. Petrovic, Mater. Sci Eng. A155, 1 (1992).

    Article  CAS  Google Scholar 

  26. M. Singh and A. Bose, in Processing and Fabrication of Advanced Materials for High Temperature Applications, edited by V. A. Ravi and T. S. Srivatsan (TMS, Warrendale, PA, 1992), p. 95.

  27. J. J. Petrovic and A. K. Vasudevan, in Intermetallic Matrix Composites II, edited by D. B. Miracle, D. L. Anton, and J. A. Graves (Mater. Res. Soc. Symp. Proc. 273, Pittsburgh, PA, 1991), p. 229.

  28. A. Costa e Silva and M. J. Kaufman, Scripta Metall. Mater. 29, 1141 (1993).

    Article  CAS  Google Scholar 

  29. P. S. Frankwicz and J. H. Perepezko, in High Temperature Ordered Intermetallic Alloys IV, edited by L.A. Johnson, D. P. Pope, and J. O. Stiegler (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), p. 169.

  30. Y. Umakoshi, T. Hirano, T. Sakagami, and T. Yamane, in High Temperature Aluminides and Intermetallics, edited by S. H. Hwang, C.T. Liu, D.P. Pope, and J. O. Stiegler (TMS-AIME, Warrendale, PA, 1990), p. 111.

  31. J.J. Petrovic and R.E. Honnell, Ceram. Eng. Sci. Proc. 11 (7-8), 734 (1990).

  32. D. M. Shah, D. Berczick, D. L. Anton, and R. Hecht, Mater. Sci. Eng. A155, 45 (1992).

    Article  CAS  Google Scholar 

  33. G. Petzow and G. Effenberg, Ternary Alloys—A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams (VCH Publishers, New York, 1993), Vol. 7.

  34. R.W. Rice and W.J. McDonough, J. Am. Ceram. Soc. 68 (5), C-122 (1985).

  35. A. B. Gokhale and G.J. Abbaschian, J. Phase Equilibria 12 (4), 493 (1991).

    Article  CAS  Google Scholar 

  36. B.D. Cullity, Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley Publishing Co., Reading, MA, 1978).

  37. G.V. Samsonov and I. M. Vinitskii, Handbook of Refractory Compounds (IFI/PLENUM, New York, 1980).

    Book  Google Scholar 

  38. T. B. Massalski, H. Okamoto, P. R. Subramania, and L. Kacprzak, Binary Alloy Phase Diagrams, 2nd ed. (ASM INTERNATIONAL, Materials Park, OH, 1990), Vol. 1.

  39. S. C. Deevi, Mater. Sci. Eng. A149, 241 (1992).

    Article  CAS  Google Scholar 

  40. D. A. Hardwick, P. L. Martin, and R. J. Moores, Scripta Metall. Mater. 27, 391 (1992).

    Article  CAS  Google Scholar 

  41. Z. Y. Fu, R. Z Yuan, Z. A. Munir, and Z. L. Yang, Int. J. Self-Propagating High-Temperature Synthesis 1 (1), 119 (1992).

    CAS  Google Scholar 

  42. I. Gotman, M.J. Koczak, and E. Shtessel, Mater. Sci. Eng. A187, 189 (1994).

    Article  CAS  Google Scholar 

  43. A. G. Merzhanov, Combustion and Flame 13, 143 (1969).

    Article  CAS  Google Scholar 

  44. L. Brewer, R. H. Lamoreaux, R. Ferro, R. Marazza, and K. Girgis, Molybdenum: Physico-Chemical Properties of Its Compounds and Alloys, Atomic Energy Review (International Atomic Energy Agency, Vienna, 1989), Special Issues No. 7.

  45. V. E. Ivanov, E. P. Nechiporenko, V. I. Zmii, and V. M. Kirvoruchko, in Diffusion Cladding of Metals, edited by G.V. Samsonov (Consultants Bureau, Plenum Publishing Co., New York, 1967), p. 29.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, M. A study of micropyretic reactions in the Mo–Si–Al ternary system. Journal of Materials Research 12, 1481–1491 (1997). https://doi.org/10.1557/JMR.1997.0204

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1997.0204

Navigation