Skip to main content
Log in

Abundant novel wave solutions of nonlinear Klein–Gordon–Zakharov (KGZ) model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this manuscript, the computational solutions of the nonlinear Klein–Gordon–Zakharov (KGZ) model are scrutinized through a new generalized analytical scheme. This mathematical model describes the evolution of strong Langmuir turbulence in plasma physics. Many distinctive solutions are obtained, such as linear, rational, hyperbolic, parabolic, and so on. 2D, 3D, contour, stream plots are plotted to demonstrate further physical and dynamical attitudes of the investigated model. The power, usefulness, and accuracy of the compensated schemes are revealed and tested. The capabilities for managing a class of nonlinear evolution equations of the new generalized method is assessed. Moreover, the stability property of the obtained solutions is checked by using the Hamiltonian system’s characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Vanraes, A. Bogaerts, Plasma physics of liquids—a focused review. Appl. Phys. Rev. 5(3), 031103 (2018)

    Article  ADS  Google Scholar 

  2. B.G. Reichl, D. Wang, T. Hara, I. Ginis, T. Kukulka, Langmuir turbulence parameterization in tropical cyclone conditions. J. Phys. Oceanogr. 46(3), 863–886 (2016)

    Article  ADS  Google Scholar 

  3. Q. Li, B.G. Reichl, B. Fox-Kemper, A.J. Adcroft, S.E. Belcher, G. Danabasoglu, A.L. Grant, S.M. Griffies, R. Hallberg, T. Hara et al., Comparing ocean surface boundary vertical mixing schemes including Langmuir turbulence. J. Adv. Model. Earth Syst. 11(11), 3545–3592 (2019)

    Article  ADS  Google Scholar 

  4. T. Kukulka, R.R. Harcourt, Influence of stokes drift decay scale on Langmuir turbulence. J. Phys. Oceanogr. 47(7), 1637–1656 (2017)

    Article  ADS  Google Scholar 

  5. Q. Li, B. Fox-Kemper, Assessing the effects of Langmuir turbulence on the entrainment buoyancy flux in the ocean surface boundary layer. J. Phys. Oceanogr. 47(12), 2863–2886 (2017)

    Article  ADS  Google Scholar 

  6. J. Liu, J.-H. Liang, K. Xu, Q. Chen, C.E. Ozdemir, Modeling sediment flocculation in Langmuir turbulence. J. Geophys. Res. Oceans 124(11), 7883–7907 (2019)

    Article  ADS  Google Scholar 

  7. Y. Fan, E. Jarosz, Z. Yu, W.E. Rogers, T.G. Jensen, J.-H. Liang, Langmuir turbulence in horizontal salinity gradient. Ocean Model. 129, 93–103 (2018)

    Article  ADS  Google Scholar 

  8. A. Xuan, B.-Q. Deng, L. Shen, Study of wave effect on vorticity in Langmuir turbulence using wave-phase-resolved large-eddy simulation. J. Fluid Mech. 875, 173–224 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. B.G. Reichl, Q. Li, A parameterization with a constrained potential energy conversion rate of vertical mixing due to Langmuir turbulence. J. Phys. Oceanogr. 49(11), 2935–2959 (2019)

    Article  ADS  Google Scholar 

  10. K. Shrestha, W. Anderson, J. Kuehl, Langmuir turbulence in coastal zones: structure and length scales. J. Phys. Oceanogr. 48(5), 1089–1115 (2018)

    Article  ADS  Google Scholar 

  11. P.P. Sullivan, J.C. McWilliams, Langmuir turbulence and filament frontogenesis in the oceanic surface boundary layer. J. Fluid Mech. 879, 512–553 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. S. Kim, P.H. Yoon, G. Choe et al., Suprathermal solar wind electrons and Langmuir turbulence. Astrophys. J. 828(1), 60 (2016)

    Article  ADS  Google Scholar 

  13. B.G. Reichl, I. Ginis, T. Hara, B. Thomas, T. Kukulka, D. Wang, Impact of sea-state-dependent Langmuir turbulence on the ocean response to a tropical cyclone. Mon. Weather Rev. 144(12), 4569–4590 (2016)

    Article  ADS  Google Scholar 

  14. D. Wang, T. Kukulka, B.G. Reichl, T. Hara, I. Ginis, Wind-wave misalignment effects on Langmuir turbulence in tropical cyclone conditions. J. Phys. Oceanogr. 49(12), 3109–3126 (2019)

    Article  ADS  Google Scholar 

  15. P. Yoon, M. Lazar, K. Scherer, H. Fichtner, R. Schlickeiser, Modified \(\kappa \)-distribution of solar wind electrons and steady-state Langmuir turbulence. Astrophys. J. 868(2), 131 (2018)

    Article  ADS  Google Scholar 

  16. S. Ali, M. Younis, M.O. Ahmad, S.T.R. Rizvi, Rogue wave solutions in nonlinear optics with coupled Schrödinger equations. Opt. Quant. Electron. 50(7), 266 (2018)

    Article  Google Scholar 

  17. S.T.R. Rizvi, K. Ali, M. Ahmad, Optical solitons for Biswas–Milovic equation by new extended auxiliary equation method. Optik 204, 164181 (2020)

    Article  ADS  Google Scholar 

  18. I. Ali, S.T.R. Rizvi, S.O. Abbas, Q. Zhou, Optical solitons for modulated compressional dispersive Alfven and Heisenberg ferromagnetic spin chains. Results Phys. 15, 102714 (2019)

    Article  Google Scholar 

  19. S.R. Rizvi, I. Afzal, K. Ali, M. Younis, Stationary solutions for nonlinear Schrödinger equations by Lie group analysis. Acta Phys. Pol. A 136, 187–189 (2019)

    Article  ADS  Google Scholar 

  20. B. Nawaz, K. Ali, S.O. Abbas, S.T.R. Rizvi, Q. Zhou, Optical solitons for non-Kerr law nonlinear Schrödinger equation with third and fourth order dispersions. Chin. J. Phys. 60, 133–140 (2019)

    Article  Google Scholar 

  21. S.T.R. Rizvi, K. Ali, H. Hanif, Optical solitons in dual core fibers under various nonlinearities. Mod. Phys. Lett. B 33(17), 1950189 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Arif, M. Younis, M. Imran, M. Tantawy, S.T.R. Rizvi, Solitons and lump wave solutions to the graphene thermophoretic motion system with a variable heat transmission. Eur. Phys. J. Plus 134(6), 303 (2019)

    Article  Google Scholar 

  23. A. Yusuf, A.I. Aliyu, M. Hashemi et al., Soliton solutions, stability analysis and conservation laws for the Brusselator reaction diffusion model with time-and constant-dependent coefficients. Eur. Phys. J. Plus 133(5), 168 (2018)

    Article  Google Scholar 

  24. F. Tchier, A. Yusuf et al., Symmetry analysis, exact solutions and numerical approximations for the space-time Carleman equation in nonlinear dynamical systems. Eur. Phys. J. Plus 134(6), 1–18 (2019)

    Article  Google Scholar 

  25. E.H. Zahran, M.M. Khater, Modified extended tanh-function method and its applications to the Bogoyavlenskii equation. Appl. Math. Model. 40(3), 1769–1775 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Lu, A.R. Seadawy, M.M. Khater, Structures of exact and solitary optical solutions for the higher-order nonlinear Schrödinger equation and its applications in mono-mode optical fibers. Mod. Phys. Lett. B 33(23), 1950279 (2019)

    Article  ADS  Google Scholar 

  27. M. Osman, D. Lu, M.M. Khater, A study of optical wave propagation in the nonautonomous Schrödinger–Hirota equation with power-law nonlinearity. Results Phys. 13, 102157 (2019)

    Article  Google Scholar 

  28. M.M. Khater, D. Lu, R.A. Attia, Dispersive long wave of nonlinear fractional Wu–Zhang system via a modified auxiliary equation method. AIP Adv. 9(2), 025003 (2019)

    Article  ADS  Google Scholar 

  29. M.M. Khater, D. Lu, R.A. Attia, Erratum: “dispersive long wave of nonlinear fractional Wu–Zhang system via a modified auxiliary equation method” [AIP Adv. 9, 025003 (2019)]. AIP Adv. 9(4), 9902 (2019)

    Article  Google Scholar 

  30. M.M. Khater, D. Lu, R.A. Attia, Lump soliton wave solutions for the (2 + 1)-dimensional Konopelchenko–Dubrovsky equation and KdV equation. Mod. Phys. Lett. B 33, 1950199 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  31. A.I. Aliyu, A. Yusuf, D. Baleanu et al., Optical solitons, explicit solutions and modulation instability analysis with second-order spatio-temporal dispersion. Eur. Phys. J. Plus 132(12), 1–9 (2017)

    Google Scholar 

  32. A.I. Aliyu, A. Yusuf et al., Traveling wave solutions and conservation laws of some fifth-order nonlinear equations. Eur. Phys. J. Plus 132(5), 224 (2017)

    Article  ADS  Google Scholar 

  33. R.A. Attia, D. Lu, M.M.A. Khater, Chaos and relativistic energy-momentum of the nonlinear time fractional Duffing equation. Math. Comput. Appl. 24(1), 10 (2019)

    MathSciNet  Google Scholar 

  34. M.M. Khater, R.A. Attia, D. Lu, Numerical solutions of nonlinear fractional Wu–Zhang system for water surface versus three approximate schemes. J. Ocean Eng. Sci. 4, 144–148 (2019)

    Article  Google Scholar 

  35. M. Khater, R. Attia, D. Lu, Modified auxiliary equation method versus three nonlinear fractional biological models in present explicit wave solutions. Math. Comput. Appl. 24(1), 1 (2019)

    MathSciNet  Google Scholar 

  36. C. Park, M.M. Khater, R.A. Attia, W. Alharbi, S.S. Alodhaibi, An explicit plethora of solution for the fractional nonlinear model of the low-pass electrical transmission lines via Atangana–Baleanu derivative operator. Alexandria Eng. J. 59, 1205–1214 (2020)

    Article  Google Scholar 

  37. C. Park, M.M. Khater, A.-H. Abdel-Aty, R.A. Attia, H. Rezazadeh, A. Zidan, A.-B. Mohamed, Dynamical analysis of the nonlinear complex fractional emerging telecommunication model with higher-order dispersive cubic-quintic. Alexandria Eng. J. 59, 1425–1433 (2020)

    Article  Google Scholar 

  38. A.-H. Abdel-Aty, M.M.A. Khater, R.A.M. Attia, M. Abdel-Aty, H. Eleuch, On the new explicit solutions of the fractional nonlinear space-time nuclear model. Fractals 28(8), 2040035 (2020)

  39. M.M. Khater, J. Alzaidi, R.A. Attia, D. Lu et al., Analytical and numerical solutions for the current and voltage model on an electrical transmission line with time and distance. Phys. Scr. 95(5), 055206 (2020)

    Article  ADS  Google Scholar 

  40. X. Zheng, Y. Shang, X. Peng, Orbital stability of solitary waves of the coupled Klein–Gordon–Zakharov equations. Math. Methods Appl. Sci. 40(7), 2623–2633 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. H. Baskonus, T. Sulaiman, H. Bulut, On the new wave behavior to the Klein–Gordon–Zakharov equations in plasma physics. Indian J. Phys. 93(3), 393–399 (2019)

    Article  ADS  Google Scholar 

  42. A. Houwe, S. Abbagari, Y. Salathiel, M. Inc, S.Y. Doka, K.T. Crépin, D. Baleanu, Complex traveling-wave and solitons solutions to the Klein–Gordon–Zakharov equations. Results Phys. 17, 103127 (2020)

    Article  Google Scholar 

  43. S. Nestor, A. Houwe, H. Rezazadeh, A. Bekir, G. Betchewe, S.Y. Doka, New solitary waves for the Klein–Gordon–Zakharov equations. Mod. Phys. Lett. B 34, 2050246 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  44. A.-H. Abdel-Aty, M.M.A. Khater, D. Baleanu, S.M. Abo-Dahab, J. Bouslimi, M. Omri, Oblique explicit wave solutions of the fractional biological population (BP) and equal width (EW) models. Adv. Differ. Equ. 2020(1), 1–17 (2020)

  45. M. Khater, R.A. Attia, D. Lu, Explicit lump solitary wave of certain interesting (3 + 1)-dimensional waves in physics via some recent traveling wave methods. Entropy 21(4), 397 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  46. A. Bekir, F. Taşcan, Ö. Ünsal, Exact solutions of the Zoomeron and Klein–Gordon–Zakharov equations. J. Assoc. Arab Univ. Basic Appl. Sci. 17, 1–5 (2015)

    Google Scholar 

Download references

Acknowledgements

This Research was supported by Taif University Researchers Supporting Project Number (TURSP-2020/48), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa M. A. Khater.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khater, M.M.A., Mousa, A.A., El-Shorbagy, M.A. et al. Abundant novel wave solutions of nonlinear Klein–Gordon–Zakharov (KGZ) model. Eur. Phys. J. Plus 136, 604 (2021). https://doi.org/10.1140/epjp/s13360-021-01385-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01385-0

Navigation