Skip to main content
Log in

Recruitment to Chromatin of (GA)n-Associated Factors GAF and Psq in the Transgenic Model System Depends on the Presence of Architectural Protein Binding Sites

  • BIOCHEMISTRY, BIOPHYSICS, AND MOLECULAR BIOLOGY
  • Published:
Doklady Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Polycomb group (PcG) repressors and Trithorax group (TrxG) activators of transcription are essential for the proper development and maintenance of gene expression profiles in multicellular organisms. In Drosophila, PcG/TrxG proteins interact with DNA elements called PRE (Polycomb response elements). We have previously shown that the repressive activity of inactive PRE in transgenes can be induced by architectural protein-binding sites. It was shown that the induction of repression is associated with the recruitment of PcG/TrxG proteins, including the DNA-binding factors Pho and Combgap. In the present study, we tested the association of the two other PRE DNA-binding factors, GAF and Psq, with bxdPRE in the presence and absence of sites for architectural proteins. As a result, it was shown that both factors can be efficiently recruited to the bxdPRE only in the presence of adjacent binding sites for architectural proteins Su(Hw), CTCF, or Pita.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Piunti, A. and Shilatifard, A., Nat. Rev. Mol. Cell Biol., 2021, vol. 22, no. 5, pp. 326–345.

    Article  CAS  PubMed  Google Scholar 

  2. Chetverina, D.A., Lomaev, D.V., and Erokhin, M.M., Acta Nat., 2020, vol. 12, pp. 66–85.

    Article  CAS  Google Scholar 

  3. Parreno, V., Martinez, A.M., and Cavalli, G., Cell Res., 2022, vol. 32, no. 3, pp. 231–253.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cavalli, G. and Heard, E., Nature, 2019, vol. 571, no. 7766, pp. 489–499.

    Article  CAS  PubMed  Google Scholar 

  5. Erokhin, M., Chetverina, O., Gyorffy, B., et al., Cancers (Basel), 2021, vol. 13, no. 13, p. 3155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kassis, J.A., Kennison, J.A., and Tamkun, J.W., Genetics, 2017, vol. 206, no. 4, pp. 1699–1725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Erokhin, M., Georgiev, P., and Chetverina, D., Epigenomes, 2018, vol. 2, no. 1, pp. 1–24.

    Article  Google Scholar 

  8. Kassis, J.A. and Brown, J.L., Adv. Genet., 2013, vol. 81, pp. 83–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Erokhin, M., Elizar’ev, P., Parshikov, A., et al., Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, no. 48, pp. 14930–14935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Erokhin, M., Gorbenko, F., Lomaev, D., et al., BMC Biol., 2021, vol. 19, no. 1, p. 113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chetverina, D., Erokhin, M., Schedl, P., Cell Mol. Life Sci., 2021, vol. 78, no. 9, pp. 4125–4141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bischof, J., Maeda, R.K., Hediger, M., et al., Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, no. 9, pp. 3312–3317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van Steensel, B., Delrow, J., and Bussemaker, H.J., Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, no. 5, pp. 2580–2585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lehmann, M., Siegmund, T., Lintermann, K.G., et al., J. Biol. Chem., 1998, vol. 273, no. 43, pp. 28504–28509.

    Article  CAS  PubMed  Google Scholar 

  15. Fritsch, C., Brown, J.L., Kassis, J.A., et al., Development, 1999, vol. 126, no. 17, pp. 3905–3913.

    Article  CAS  PubMed  Google Scholar 

  16. Brown, J.L. and Kassis, J.A., Genetics, 2013, vol. 195, no. 2, pp. 407–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Biggin, M.D., Bickel, S., Benson, M., et al., Cell, 1988, vol. 53, no. 5, pp. 713–722.

    Article  CAS  PubMed  Google Scholar 

  18. Moses, A.M., Pollard, D.A., Nix, D.A., et al., PLoS Comput. Biol., 2006, vol. 2, no. 10, p. e130.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Brown, J.L., Grau, D.J., DeVido, S.K., et al., Nucleic Acids Res., 2005, vol. 33, no. 16, pp. 5181–5189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ray, P., De, S., Mitra, A., et al., Proc. Natl. Acad. Sci. U. S. A., 2016, vol. 113, no. 14, pp. 3826–3831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed using the infrastructure of the Center for High Precision Editing and Genetic Technologies for Biomedicine of the Institute of Gene Biology of the Russian Academy of Sciences.

Funding

This work was supported by the Russian Science Foundation (project no. 20-74-10099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Erokhin.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chetverina, D.A., Gorbenko, F.V., Lomaev, D.V. et al. Recruitment to Chromatin of (GA)n-Associated Factors GAF and Psq in the Transgenic Model System Depends on the Presence of Architectural Protein Binding Sites. Dokl Biochem Biophys 506, 210–214 (2022). https://doi.org/10.1134/S1607672922050039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1607672922050039

Keywords:

Navigation