Skip to main content
Log in

\(C^{1}\)-Smooth \(\Omega\)-Stable Skew Products and Completely Geometrically Integrable Self-Maps of 3D-Tori, I: \(\Omega\)-Stability

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We prove here the criterion of \(C^{1}\)- \(\Omega\)-stability of self-maps of a 3D-torus, which are skew products of circle maps. The \(C^{1}\)- \(\Omega\)-stability property is studied with respect to homeomorphisms of skew products type. We give here an example of the \(\Omega\)-stable map on a 3D-torus and investigate approximating properties of maps under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Following [1], everywhere when studying the \(\Omega\)-stability property of maps on manifolds with an edge, we assume that the edge is invariant with respect to maps under consideration.

  2. In what follows, the subscript in the entry \(T^{j},j=1\mbox{ or }2,\) will mean the coordinates with which \(T^{j}\) is provided.

  3. A map \(\psi\in C^{1}(S^{1})\) is said to be expanding if for every \(x\in S^{1}\) the inequality \(|\psi^{\prime}(x)|>1\) holds [24, Ch. 1, §1.3].

  4. A quasiminimal set is the closure of a recurrent (but not periodic) trajectory [31, Ch. 5, §5].

  5. This property means that for a finite cover of \(K(\psi)\) by intervals of the length \(\leqslant\theta\) there is a periodic orbit that intersects every interval of this cover, at least, at one point.

  6. If \(\Psi\in SP^{0}(T^{3})\), then the equality \(\text{Per}(\widehat{\Psi})=pr_{\widehat{x}_{2}}\big{(}\text{Per}(\Psi)\big{)}\) may not hold. Among the points of the set \(\text{Per}(\widehat{\Psi})\) there may be points that belong to the projection on \(T^{2}_{\widehat{x}_{2}}\) of the set of uniformly recurrent points, but not the set of periodic points of \(\Psi\) (cf. [25]). For such points \(\widehat{x}_{2}\) it is possible that \(\big{(}\text{Per}(\Psi)\big{)}(\widehat{x}_{2})=\emptyset.\) As for continuous skew products on 3D-cells, the following equalities are valid: \(\text{Per}(\widehat{\Psi})=pr_{\widehat{x}_{2}}\big{(}\text{Per}(\Psi)\big{)}\) and \(\text{Per}\big{(}\psi_{3,\widehat{x}_{2},m(\widehat{x}_{2})}\big{)}=\big{(}\text{Per}(\Psi)\big{)}(\widehat{x}_{2})\).

  7. By Definition 6, Jacobson’s theorem and Proposition 4, it means that all fiber maps belong to \(\bf L_{2}\) and have the same degree \((\)for the degree of fiber maps, see also [25]\()\).

References

  1. Anosov, D. V., Structurally Stable Systems, Tr. Mat. Inst. Steklova, 1985, vol. 169, pp. 59–93 (Russian).

    MathSciNet  Google Scholar 

  2. Efremova, L. S., On the Concept of the \(\Omega\)-Function of the Skew Product of Interval Mappings, J. Math. Sci. (N. Y.), 2001, vol. 105, no. 1, pp. 1779–1798; see also: Dynamical Systems, Itogi Nauki Tekh. Ser. Sovrem. Mat. Prilozh. Temat. Obz., vol. 67, Moscow: VINITI, 1999, pp. 129–160.

    Article  Google Scholar 

  3. Efremova, L. S., New Set-Valued Functions in the Theory of Skew Products of Interval Maps, Nonlinear Anal., 2001, vol. 47, no. 8, pp. 5297–5308.

    Article  MathSciNet  Google Scholar 

  4. Efremova, L. S., Set-Valued Functions and Dynamics of Skew Products of Interval Maps, in Progress in Nonlinear Science (Nizhny Novgorod, 2001): Vol. 1, L. M. Lerman, L. P. Shil’nikov (Eds.), Nizhniy Novgorod: RAS, Inst. Appl. Phys., 2002, pp. 219–224 (Russian).

    Google Scholar 

  5. Efremova, L. S., \(\Omega\)-Stable Skew Products of Interval Maps Are not Dense in \(T^{1}(I)\), Proc. Steklov Inst. Math., 2002, vol. 236, pp. 157–163; see also: Tr. Mat. Inst. Steklova, 2002, vol. 236, pp. 167-173.

    Google Scholar 

  6. Efremova, L. S., Stability As a Whole of a Family of Fibers Maps and \(\Omega\)-Stability of \(C^{1}\)-Smooth Skew Products of Maps of an Interval, J. Phys. Conf. Ser., 2016, vol. 692, no. 1, 012010, 10 pp.

    Article  MathSciNet  Google Scholar 

  7. Efremova, L. S., Dynamics of Skew Products of Maps of an Interval, Russian Math. Surveys, 2017, vol. 72, no. 1, pp. 101–178; see also: Uspekhi Mat. Nauk, 2017, vol. 72, no. 1(433), pp. 107-192.

    Article  MathSciNet  Google Scholar 

  8. Efremova, L. S., Small \(C^{1}\)-Smooth Perturbations of Skew Products and the Partial Integrability Property, Appl. Math. Nonlinear Sci., 2020, vol. 5, no. 2, pp. 317–328.

    Article  MathSciNet  Google Scholar 

  9. Efremova, L. S., Geometrically Integrable Maps in the Plane and Their Periodic Orbits, Lobachevskii J. Math., 2021, vol. 42, no. 10, pp. 2315–2324.

    Article  MathSciNet  Google Scholar 

  10. Efremova, L. S., Small Perturbations of Smooth Skew Products and Sharkovsky’s Theorem, J. Difference Equ. Appl., 2020, vol. 26, no. 8, pp. 1192–1211.

    Article  MathSciNet  Google Scholar 

  11. Efremova, L. S., Ramified Continua As Global Attractors of \(C^{1}\)-Smooth Self-Maps of a Cylinder Close to Skew Products, J. Difference Equ. Appl., 2023, vol. 29, no. 9–12, pp. 1244–1274.

    Article  MathSciNet  Google Scholar 

  12. Efremova, L. S., Introduction to Completely Geometrically Integrable Maps in High Dimensions, Mathematics, 2023, vol. 11, no. 4, 926, 14 pp.

    Article  Google Scholar 

  13. Smale, S., Differentiable Dynamical Systems, Bull. Amer. Math. Soc., 1967, vol. 73, no. 6, pp. 747–817.

    Article  MathSciNet  Google Scholar 

  14. Smale, S., The \(\Omega\)-Stability Theorem, in Global Analysis: Proc. Sympos. Pure Math. (Berkeley, Calif., 1968): Vol. 14, Providence, R.I.: AMS, 1970, pp. 289–297.

    Google Scholar 

  15. Hirsch, M., Palis, J., Pugh, C., and Shub, M., Neighborhoods of Hyperbolic Sets, Invent. Math., 1969/70, vol. 9, pp. 121–134.

    Article  MathSciNet  Google Scholar 

  16. Ikeda, H., \(\Omega\)-Inverse Limit Stability Theorem, Trans. Amer. Math. Soc., 1996, vol. 348, no. 6, pp. 2183–2200.

    Article  MathSciNet  Google Scholar 

  17. Iglesias, J., Portela, A., and Rovella, A., Some Recent Results on the Stability of Endomorphisms, in Dynamics, Games and Science: 1, Springer Proc. Math., vol. 1, Heidelberg: Springer, 2011, pp. 471–485.

    Chapter  Google Scholar 

  18. Iglesias, J., Portela, A., and Rovella, A., \(C^{1}\) Stability of Endomorphisms on Two-Dimensional Manifolds, Fund. Math., 2012, vol. 219, no. 1, pp. 37–58.

    Article  MathSciNet  Google Scholar 

  19. Mañé, R. and Pugh, Ch., Stability of Endomorphisms, in Dynamical Systems: Proc. Sympos. Appl. Topology and Dynamical Systems (Univ. Warwick, Coventry, 1973/1974), Lect. Notes in Math., vol. 468, Berlin: Springer, 1975, pp. 175–184.

    Google Scholar 

  20. Przytycki, F., On \(\Omega\)-Stability and Structural Stability of Endomorphisms Satisfying Axiom A, Studia Math., 1977, vol. 60, no. 1, pp. 61–77.

    Article  MathSciNet  Google Scholar 

  21. Shub, M., Endomorphisms of Compact Differentiable Manifolds, Amer. J. Math., 1969, vol. 91, no. 1, pp. 175–199.

    Article  MathSciNet  Google Scholar 

  22. Jakobson, M. V., On Smooth Mappings of the Circle into Itself, Math. USSR-Sb., 1971, vol. 14, no. 2, pp. 161–185; see also: Mat. Sb. (N. S.), 1971, vol. 85(127), no. 2(6), pp. 163-188.

    Article  Google Scholar 

  23. Anosov, D. V., Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature, Proc. Steklov Inst. Math., 1967, vol. 90, pp. 1–235; see also: Tr. Mat. Inst. Steklova, 1967, vol. 90, pp. 3-210.

    MathSciNet  Google Scholar 

  24. Nitecky, Z., Differential Dynamics: An Introduction to the Orbit Structure of Diffeomorphisms, Cambridge, Mass.: MIT Press, 1971.

    Google Scholar 

  25. Efremova, L. S., Simplest Skew Products on \(n\)-Dimensional \((n\geqslant 2)\) Cells, Cylinders and Tori, Lobachevskii J. Math., 2022, vol. 43, no. 7, pp. 1598–1618.

    Article  MathSciNet  Google Scholar 

  26. Coven, E. M. and Nitecki, Z., Non-Wandering Sets of the Powers of Maps of the Interval, Ergodic Theory Dynam. Systems, 1981, vol. 1, no. 1, pp. 9–31.

    Article  MathSciNet  Google Scholar 

  27. Sharkovsky, A. N., Maistrenko, Yu. L., and Romanenko, E. Yu., Difference Equations and Their Applications, Math. Appl., vol. 250, Dordrecht: Kluwer, 1993.

    Book  Google Scholar 

  28. Efremova, L. S. and Makhrova, E. N., One-Dimensional Dynamical Systems, Russian Math. Surveys, 2021, vol. 76, no. 5, pp. 821–881; see also: Uspekhi Mat. Nauk, 2021, vol. 76, no. 5(461), pp. 81-146.

    Article  MathSciNet  Google Scholar 

  29. de Melo, W. and van Strien, S., One-Dimensional Dynamics, Ergeb. Math. Grenzgeb. (3), vol. 25, Berlin: Springer, 1993.

    Book  Google Scholar 

  30. Kuratowski, K., Topology: Vol. 1, New York: Acad. Press, 1966.

    Google Scholar 

  31. Nemytskii, V. V. and Stepanov, V. V., Qualitative Theory of Differential Equations, Princeton Math.Ser., vol. 22, Princeton, N.J.: Princeton Univ. Press, 1960.

    Google Scholar 

  32. Blinova, E. V. and Efremova, L. S., On \(\Omega\)-Blow-Ups in the Simplest \(C^{1}\)-Smooth Skew Products of Interval Mappings, J. Math. Sci. (N. Y.), 2009, vol. 157, no. 3, pp. 456–465.

    Article  MathSciNet  Google Scholar 

  33. Efremova, L. S., Absence of \(C^{1}\)-\(\Omega\)-Explosion in the Space of Smooth Simplest Skew Products, J. Math. Sci. (N. Y.), 2014, vol. 202, no. 6, pp. 794–808.

    Article  MathSciNet  Google Scholar 

  34. Nitecki, Z., Nonsingular Endomorphisms of the Circle, in Global Analysis: Proc. Sympos. Pure Math. (Berkeley, Calif., 1968): Vols. 14–16, Providence, R.I.: AMS, 1970, pp. 203–220.

    Google Scholar 

  35. Abraham, R. and Smale, S., Nongenericity of \(\Omega\)-Stability, in Global Analysis: Proc. Sympos. Pure Math. (Berkeley, Calif., 1968): Vols. 14, Providence, R.I.: AMS, 1970, pp. 5–8.

    Google Scholar 

  36. Newhouse, S. E., Nondensity of Axiom \({\rm A}({\rm a})\) on \(S^{2}\), in Global Analysis: Proc. Sympos. Pure Math. (Berkeley, Calif., 1968): Vols. 14–16, Providence, R.I.: AMS, 1970, pp. 191–202.

    Google Scholar 

  37. Mikhailov, V. P., Partial Differential Equations, Moscow: Mir, 1978.

    Google Scholar 

Download references

Funding

This research is supported by the Russian Science Foundation (RSF), grant No. 24-21-00242, https://rscf.ru/en/project/24-21-00242/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyudmila S. Efremova.

Ethics declarations

The author declares that she has no conflict of interest.

Additional information

PUBLISHER’S NOTE

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

MSC2010

37C05, 37C20, 37D30, 37Exx

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efremova, L.S. \(C^{1}\)-Smooth \(\Omega\)-Stable Skew Products and Completely Geometrically Integrable Self-Maps of 3D-Tori, I: \(\Omega\)-Stability. Regul. Chaot. Dyn. 29, 491–514 (2024). https://doi.org/10.1134/S1560354724520010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354724520010

Keywords

Navigation