Skip to main content
Log in

Design of Integrated Voltage Multipliers Using Standard CMOS Technologies

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The results of the design of integrated multistage voltage multipliers as components of supply modules for wireless passive microdevices are presented. The parameters of transistors that are significant for the construction of multipliers are considered for three typical CMOS technologies: CM018G 180 nm, HCMOS8D 180 nm, and C250G 250 nm. The Cadence CAD simulation results demonstrate that when implementing an eight-stage multiplier using the CM018G technology, the minimum output voltage level required for operation of the microcircuit is achieved at input amplitude of 250 mV; and when implementing a similar device using the HCMOS8D technology, at an amplitude of 375 mV. Using the example of the constructed 16-stage multiplier, it is shown that the voltage multiplication efficiency values range from 20 to 54% for a wide range of the input voltage, and the efficiency decreases only by 1–3% compared to the 8-stage implementation. The proposed recommendations for the design of integrated voltage rectifiers-multipliers can be used in the development of the passive supply units for microelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Guler, U., Jia, Ya., and Ghovanloo, M., A reconfigurable passive voltage multiplier for wireless mobile iot applications, IEEE Trans. Circuits Syst. II: Express Briefs, 2020, vol. 67, no. 4, pp. 615–619. https://doi.org/10.1109/tcsii.2019.2923534

    Article  Google Scholar 

  2. Chun, A.C.C., Ramiah, H., and Mekhilef, S., Wide power dynamic range CMOS RF-DC rectifier for RF energy harvesting system: A review, IEEE Access, 2022, vol. 10, pp. 23948–23963. https://doi.org/10.1109/access.2022.3155240

    Article  Google Scholar 

  3. Li, P., Long, Z., and Yang, Z., RF energy harvesting for batteryless and maintenance-free condition monitoring of railway tracks, IEEE Internet Things J., 2021, vol. 8, no. 5, pp. 3512–3523. https://doi.org/10.1109/jiot.2020.3023475

    Article  CAS  Google Scholar 

  4. Charthad, J., Chang, T., Liu, Z., Sawaby, A., Weber, M., Baker, S., Gore, F., Felt, S., and Arbabian, A., A mm-sized wireless implantable device for electrical stimulation of peripheral nerves, IEEE Trans. Biomed. Circuits Syst., 2019, vol. 12, no. 2, pp. 257–270. https://doi.org/10.1109/tbcas.2018.2799623

    Article  Google Scholar 

  5. Takacs, A., Okba, A., Aubert, H., Charlot, S., and Calmon, P., Recent advances in electromagnetic energy harvesting and wireless power transfer for IoT and SHM applications, 2017 IEEE Int. Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM), Donostia, Spain, 2017, IEEE, 2017, pp. 1–4. https://doi.org/10.1109/ecmsm.2017.7945868

  6. Dickson, J.F., On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique, IEEE J. Solid-State Circuits, 1976, vol. 11, no. 3, pp. 374–378. https://doi.org/10.1109/jssc.1976.1050739

    Article  ADS  Google Scholar 

  7. Curty, J.-P., Joehl, N., Dehollain, C., and Declercq, M., Remotely powered addressable UHF RFID integrated system, IEEE J. Solid-State Circuits, 2005, vol. 40, no. 11, pp. 2193–2202. https://doi.org/10.1109/jssc.2005.857352

    Article  ADS  Google Scholar 

  8. Hong, Ya., Chan, Ch.F., Guo, J., Ng, Yu.S., Shi, W., Leung, L.K., Leung, K.N., Choy, Ch.S., and Pun, K.P., Design of passive UHF RFID tag in 130 nm CMOS technology, APCCAS 2008-2008 IEEE Asia Pacific Conf. on Circuits and Systems, Macao, 2008, IEEE, 2008, pp. 1371–1374. https://doi.org/10.1109/APCCAS.2008.4746284

  9. Teh, Yi.-Kh., Mohd-Yasin, F., Choong, F., Reaz, M.I., and Kordesch, A.V., Design and analysis of UHF micropower CMOS DTMOST rectifiers, IEEE Trans. Circuits Syst. II: Express Briefs, 2009, vol. 56, no. 2, pp. 122–126. https://doi.org/10.1109/TCSII.2008.2010190

    Article  Google Scholar 

  10. Yao, Yu., Wu, J., Shi, Yi., and Dai, F.F., A fully integrated 900-MHz passive RFID transponder front end with novel zero-threshold RF–DC rectifier, IEEE Trans. industrial electronics, 2008, vol. 56, no. 7, pp. 2317–2325. https://doi.org/10.1109/TIE.2008.2010180

    Article  Google Scholar 

  11. Fahsyar, P.N.A. and Soin, N., A proposed low power voltage multiplier for passive UHF RFID transponder, 2010 IEEE Int. Conf. on Semiconductor Electronics (ICSE2010), Malacca, Malaysia, 2010, IEEE, 2010, pp. 334–337. https://doi.org/10.1109/smelec.2010.5549377

  12. Wang, Ya., Wen, G., Mao, W., He, Ya., and Zhu, X., Design of a passive UHF RFID tag for the ISO18000-6C protocol, J. Semicond., 2011, vol. 32, no. 5, p. 055009. https://doi.org/10.1088/1674-4926/32/5/055009

    Article  Google Scholar 

  13. Mabrouki, A., Latrach, M., and Lorrain, V., High efficiency low power rectifier design using zero bias schottky diodes, 2014 IEEE Faible Tension Faible Consommation, Monaco, 2014, IEEE, 2014, pp. 1–4. https://doi.org/10.1109/ftfc.2014.6828604

  14. Nicot, J. and Taris, T., Remote RF powering of ambient sensors, 2016 IEEE Int. Conf. on Electronics, Circuits and Systems (ICECS), Monte Carlo, 2016, IEEE, 2016, pp. 760–763. https://doi.org/10.1109/icecs.2016.7841313

  15. Wang, X., Abdelatty, O., and Mortazawi, A., Design of a wide dynamic range rectifier array with an adaptive power distribution technique, 2016 46th European Microwave Conf. (EuMC), London, 2016, IEEE, 2016, pp. 922–925. https://doi.org/10.1109/eumc.2016.7824495

  16. Sinyukin, A.S. and Kovalev, A.V., Method for the iterative refinement of parameter values in analytical models of microelectronic devices based on integrated mos transistors, Russ. Microelectron., 2022, vol. 51, no. 6, pp. 398–403. https://doi.org/10.1134/s1063739722700056

    Article  Google Scholar 

  17. Technologies, Mikron. https://www.mikron.ru/capabilities/technology. Cited June 2, 2023.

  18. 0.18-micron Technology, TSCM. https://www.tsmc.com/ english/dedicatedFoundry/technology/logic/l_018micron. Cited June 2, 2023.

  19. New microelectronic technologies, Manufacturer of microelectronic components NM-Tekh. https://nm-tech.org. Cited June 2, 2023.

  20. Weste, N.H.E. and Harris, D.M., CMOS VLSI Design: A Circuits and Systems Perspective, Boston: Addison-Wesley, 2011.

    Google Scholar 

  21. Sinyukin, A.S. and Konoplev, B.G., Integrated CMOS microwave power converter for passive wireless devices, Russ. Microelectron., 2021, vol. 50, no. 3, pp. 189–196. https://doi.org/10.1134/s1063739721020086

    Article  CAS  Google Scholar 

  22. Fang, S. and McVittie, J.P., Thin-oxide damage from gate charging during plasma processing, IEEE Electron Device Lett., 1992, vol. 13, no. 5, pp. 288–290. https://doi.org/10.1109/55.145056

    Article  ADS  CAS  Google Scholar 

  23. Sinyukin, A.S., Konoplev, B.G., and Kovalev, A.V., RF energy converter on nanoscale MOSFETs for passive wireless applications, Probl. Razrab. Perspektivnykh Mikro- i Nanoelektronnykh Sistem, 2020, no. 3, pp. 218–223. https://doi.org/10.31114/2078-7707-2020-3-218-223

  24. Baker, R.J., CMOS: Circuit Design, Layout, and Simulation, Hoboken, N.J.: Wiley, 2010. https://doi.org/10.1002/9780470891179

    Book  Google Scholar 

  25. Dabhi, C.K., Parihar, S.S., Agrawal, H., Paydavosi, N., Morshed, T.H., Lu, D.D., Yang, W., Dunga, M.V., Xi, X., He, J., Liu, W., Kanyu, Cao, M., Jin, X., Ou, J.J., and Chan, M., BSIM4 4.8.1 MOSFET Model, Berkeley, Calif.:: Univ. of California, 2017.

    Google Scholar 

  26. Konoplev, B.G. and Sinyukin, A.S., Voltage multiplier for low-power applications, RF Patent 199930, 2020.

Download references

ACKNOWLEDGMENTS

When performing the work, the software and hardware of the Center for Shared Use “Microsystem Technology and Electronic Component Base” of the National Research University of Electronic Technology (MIET) was used.

Funding

This study was carried out as part of project no. FENW-2020-0022 “Development and research of methods and tools for monitoring, diagnosing, and predicting the condition of engineering objects based on artificial intelligence” on the instructions of the Russian Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Sinyukin, B. G. Konoplev or A. V. Kovalev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinyukin, A.S., Konoplev, B.G. & Kovalev, A.V. Design of Integrated Voltage Multipliers Using Standard CMOS Technologies. Russ Microelectron 52, 527–534 (2023). https://doi.org/10.1134/S1063739723700713

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739723700713

Keywords:

Navigation