Skip to main content
Log in

The Effect of DNA-Binding Ligands from Dimeric Bisbenzimidazoles of the DBA(n) and DBPA(n) Series in Combination with γ-Radiation on Epithelial–Mesenchymal Transition and Pool Size of MCF-7 Breast Cancer Stem Cells

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Radiation therapy is one of the main methods of treating malignant neoplasms, including breast cancer. However, it is known that it can lead to an increase in the number of cancer stem cells that are resistant to traditional antiегьщк medicines and are believed to be responsible for the development of relapses and metastases. Therefore, the development of means for the elimination of cancer stem cells, especially in combination with ionizing radiation, is of considerable interest. The effects of the single and combined exposure of a new series of minor-groove DNA ligands-dimeric bisbenzimidazoles DBA(n) and DBPA(n) (where n is the number of methylene groups between two bisbenzimidazole blocks) and γ-radiation on human breast cancer cells of the MCF-7 line in vitro were studied. In particular, compounds with the maximum cytotoxic effect and binding to cells were selected; the effect of the latter on the population of CD44+CD24−/low cancer stem cells and radiation-induced epithelial–mesenchymal transition was studied according to the criterion of vimentin expression. An increase in the expression level of this protein and, at the same time, the relative number of cancer stem cells after a single exposure to γ-radiation at a dose of 4 Gy was shown. DBPA(1,4) in combination with irradiation blocked radiation-induced expression of vimentin and reduced the relative number of cancer stem cells by 1.7 and 4.1 times compared with irradiation alone, respectively (p = 0.041 and p = 0.005). At the same time, the absolute number of cancer stem cells decreased by 2.8 and 12.0 times compared to irradiation alone, respectively (p = 0.029 and p = 0.004). The single and combined effect of DBA(5,7) with gamma radiation increased the expression of vimentin; the same compounds, when combined with irradiation, increased the relative number of cancer stem cells by 3.1 and 3.6 times compared with irradiation alone, respectively (p = 0.006 and p = 0.005). The absolute number of cancer stem cells increased by 2.2 and 1.5 times, respectively (p = 0.017 and p = 0.032). The data we obtained demonstrated a close relationship between the process of epithelial–mesenchymal transition and the formation of a pool of cancer stem cells after radiation exposure; they also indicated the prospects for further study of DBPA(1,4) as a means of eliminating cancer stem cells in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. Statistics on breast cancer (26.03.2021). World Health Organization. https://www.who.int/ru/news-room/factsheets/detail/breast-cancer.

  2. M. Kakarala and M. S. Wicha, J. Clin. Oncol. 26 (17), 2813 (2008).

    Article  Google Scholar 

  3. S. Taurina and H. Alkhalif, Neoplasia 22 (12), 663 (2020).

    Article  Google Scholar 

  4. P. Zhu and Z. Fan, Biophys. Rep. 4 (4), 178 (2018).

    Article  Google Scholar 

  5. N. K. Lytle, A. G. Barber, and T. Reya, Nat. Rev. 18, 669 (2018).

    Article  Google Scholar 

  6. T. Zhang, H. Zhou, K. Wang, et al., Biomed. Pharmacother. 147, 112616 (2022).

    Article  Google Scholar 

  7. X. Zeng, C. Liu, J. Yao, et al., Pharmacol. Res. 136, 105320 (2021).

    Article  Google Scholar 

  8. M. Al-Hajj, M. S. Wicha, A. Benito-Hernandez, et al., Proc. Natl. Acad. Sci. U. S. A. 100 (7), 3983 (2003).

    Article  ADS  Google Scholar 

  9. F. F. de Beca, P. Caetano, R. Gerhard, et al., J. Clin. Pathol. 66, 187 (2013).

    Article  Google Scholar 

  10. R. Camerlingo, G. A. Ferraro, F. D. Francesco, et al., Oncol. Rep. 31, 1127 (2014).

    Article  Google Scholar 

  11. W. Li, H. Ma, J. Zhang, et al., Sci. Rep. 7, 13856 (2017).

    Article  ADS  Google Scholar 

  12. C. Sheridan, H. Kishimoto, R. K. Fuchs, et al., Breast Cancer Res. 8 (5), 1 (2006).

    Article  Google Scholar 

  13. T. Phillips, W. H. McBride, and F. Pajonk, JNCI, J. Natl. Cancer Inst. 98 (24), 1777 (2006).

    Article  Google Scholar 

  14. C. Lagadec, E. Vlashi, L. D. Donna, et al., Breast Cancer Res. 12 (13), 1 (2010).

    Article  Google Scholar 

  15. I. A. Zamulaeva, O. N. Matchuk, E. I. Selivanova, et al., Radiats. Biol., Radioekol. 54 (3), 256 (2014).

    Google Scholar 

  16. K. A. Churyukina, A. L. Zhuze, A. A. Ivanov, et al., Biophysics 65 (1), 87 (2020).

    Article  Google Scholar 

  17. F. De Bacco, P. Luraghi, E. Medico, et al., J. Natl. Cancer Inst. 103 (8), 645 (2011).

    Article  Google Scholar 

  18. A. Kawamoto, T. Yokoe, K. Tanaka, et al., Oncol. Rep. 27 (1), 51 (2012).

    Google Scholar 

  19. X. Zhang, X. Li, N. Zhang, et al., Biochem. Biophys. Res. Commun. 412 (1), 188 (2011).

    Article  Google Scholar 

  20. S. Y. Lee, E. K. Jeong, M. K. Ju, et al., Mol. Cancer 16, 10 (2017). https://doi.org/10.1186/s12943-016-0577-4

    Article  Google Scholar 

  21. C. Lagadec, E. Vlashi, L. D. Donna, et al., Stem Cells 30, 833 (2012).

    Article  Google Scholar 

  22. X. Gao, B. J. Sishc, C. B. Nelson, et al., Front. Oncol. 9 (138), 00138 (2016). https://doi.org/10.3389/fonc.2016.00138

    Article  Google Scholar 

  23. F. Li, K. Zhuo, L. Gao, et al., Oncol. Lett. 12, 3059 (2016).

    Article  Google Scholar 

  24. L. Sun and J. Fang, Cell Mol. Life Sci. 73 (23), 4493 (2016).

    Article  Google Scholar 

  25. S. Keyvani-Ghamsari, K. Khorsandi, A. Rasul, et al., Clin. Epigenet. 13, 120 (2021). https://doi.org/10.1186/s13148-021-01107-4

    Article  Google Scholar 

  26. E. Nowak and I. Bednarek, Cells 10, 3435 (2021).

    Article  Google Scholar 

  27. Y. Yamada, H. Haga, and Y. Yamada, Stem Cells Transl. 3 (10), 1182 (2014).

    Article  Google Scholar 

  28. A. Ivanov, V. Koval, O. Susova, et al., Bioorg. Med. Chem. Lett. 25 (13), 2634 (2015).

    Article  Google Scholar 

  29. N. A. Cherepanova, A. A. Ivanov, D. V. Maltseva, et al., J. Enzyme Inhib. Med. Chem. 26, 295 (2011).

    Article  Google Scholar 

  30. O. Y. Susova, A. A. Ivanov, S. M. Ruiz, et al., Biochemistry (Moscow) 75 (6), 695 (2010).

    Article  Google Scholar 

  31. M. Darii, A. R. Rakhimova, V. N. Tashlitskiĭ, et al., Mol. Biol. (Moscow) 47 (2), 292 (2013).

    Article  Google Scholar 

  32. K. A. Churyukina, I. A. Zamulaeva, A. A. Ivanov, et al., Radiats. Biol., Radioekol. 57 (2), 136 (2017).

    Google Scholar 

  33. I. A. Zamulaeva, K. A. Churyukina, O. N. Matchuk, et al., AIMS Biophys. 7 (4), 339 (2020).

    Article  Google Scholar 

  34. V. S. Koval, A. F. Arutyunyan, and A. L. Zhuze, Bioorg. Med. Chem. 26 (9), 2302 (2018).

    Article  Google Scholar 

  35. V. S. Koval, A. F. Arutyunyan, V. I. Salyanov, et al., Bioorg. Med. Chem. 28, 115378 (2020).

    Article  Google Scholar 

  36. P. G. Baraldi, A. Bovero, F. Fruttarolo, et al., Med. Res. Rev. 24 (4), 475 (2004).

    Article  Google Scholar 

  37. K. Mišković, M. Bujak, M. Baus, et al., Arh. Hig. Rada Toksikol. 64 (4), 593 (2013).

    Article  Google Scholar 

  38. K. S. Sainia, H. Hamidullaha, R. Ashrafb, et al., Mol. Carcinogenesis 54 (4), 1266 (2016).

    Google Scholar 

  39. M. S. Nafie, K. Arafa, N. K. Sedky, et al., Chem.-Biol. Interact. 324, 109087 (2020).

    Article  Google Scholar 

  40. G. S. Khan, A. Shah, Zia-ur-Rehman, et al., J. Photochem. Photobiol. B 115, 105 (2012).

    Article  Google Scholar 

  41. R.-R. Begicevic and M. Falasca, Int. J. Mol. Sci. 18, 1(2017).

    Article  Google Scholar 

  42. J. Konge, F. Leteurtre, M. Goislard, et al., Oncotarget 9 (34), 23531 (2018).

    Article  Google Scholar 

  43. H. Fazilaty, L. Rago, K. K. Youssef, et al., Nat. Commun. 5115, 5115 (2019). https://doi.org/10.1038/s41467-019-13091-8

    Article  ADS  Google Scholar 

  44. B. Dong, Z. Qiu, Y. Wu, Front. Pharmacol. 11, 596239 (2020). https://doi.org/10.3389/fphar.2020.596239

    Article  Google Scholar 

  45. M. Garg, World J. Stem Cells 9 (8), 118 (2017).

    Article  Google Scholar 

  46. S. Kotiyal and S. Bhattacharya, Biochem. Biophys. Res. Commun. 453, 112 (2014).

    Article  Google Scholar 

  47. S. Tanabe, S. Quader, H. Cabral, et al., Front. Pharmacol. 11, 00904 (2020). https://doi.org/10.3389/fphar.2020.00904

    Article  Google Scholar 

  48. A. Kanamoto, I. Ninomiya, S. Harada, et al., Int. J. Oncol. 49 (5), 1859 (2016).

    Article  Google Scholar 

  49. T. Boulding, R. D. McCuaig, A. Tan, et al., Sci. Rep. 8, 73 (2018). https://doi.org/10.1038/s41598-017-17913-x

    Article  ADS  Google Scholar 

  50. S. Ambrosio, C. D. Sacca, and B. Majello, Biochim. Biophys. Acta, Gene Regul. Mech. 1860, 905 (2017).

    Article  Google Scholar 

  51. S. Zhang, Y. Gong, C. Li, et al., Cell Proliferation 54 (2), e12963 (2021). https://doi.org/10.1111/cpr.12963

    Article  Google Scholar 

  52. H. M. Kwon, E. J. Kang, K. Kang, et al., Oncotarget 8, 89005 (2017).

    Article  Google Scholar 

  53. G. Xue, Z. Ren., Y. Chen, et al., Cancer Lett. 361 (1), 121 (2015). https://doi.org/10.1016/j.canlet.2015.02.046

    Article  Google Scholar 

Download references

Funding

The research was carried out with the financial support of the Russian Science Foundation, project no. 18-75-10025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Churiukina.

Ethics declarations

The authors declare that they have no conflicts of interest.

This paper does not describe any studies using humans and animals as objects.

Additional information

Translated by E. Puchkov

Abbreviations: CSCs, tumor stem cells; EMT, epithelial–mesenchymal transition; DB(n), DBA(n), and DBPA(n), dimeric bisbenzimidazoles of various series (dimeric bisbenzimidazoles, where n is the number of methylene groups in the linker); FITC, fluoresceinisothiocyanate; MTT, 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (methyl thiazolyl tetrazolium).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Churiukina, K.A., Matchuk, O.N., Kaprin, A.D. et al. The Effect of DNA-Binding Ligands from Dimeric Bisbenzimidazoles of the DBA(n) and DBPA(n) Series in Combination with γ-Radiation on Epithelial–Mesenchymal Transition and Pool Size of MCF-7 Breast Cancer Stem Cells. BIOPHYSICS 68, 422–434 (2023). https://doi.org/10.1134/S0006350923030065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350923030065

Keywords:

Navigation