Skip to main content
Log in

Dynamics of allozyme heterozygosity in Siberian dwarf pine Pinus pumila (Pall.) Regel populations of the Russian Far East: Comparison of embryos and maternal plants

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Siberian dwarf pine, or Japanese stone pine, Pinus pumila (Pall.) Regel is widespread in eastern Siberia and the Russian Far East; the species is bird-dispersed and has a unique crawling or shrub living form. A mixed mating system (predominant outcrossing with self-pollination and matings of close relatives) leads to the formation of partly inbred progenies in P. pumila, as in the majority of other conifers. The question arises as to whether inbred individuals persist in the reproductive part of a population, which can have negative genetic consequences. The ADH, FDH, FEST, GDH, GOT, IDH, LAP, MNR, MDH, PEPCA, 6-PGD, PGI, PGM, SKDH, and SOD isozyme systems were analyzed to study the dynamics of heterozygosity in four P. pumila natural populations from the Pacific region, optimal for the species. Samples were collected in northern Koryakia, southern Kamchatka (two samples), and the Kunashir Island (Kurils). Wright’s fixation index was used to estimate the level of inbreeding in embryos from dormant seeds resulting from open pollination and in maternal plants. A substantial level of inbreeding (F IS = 0.124−0.342) was observed in the embryo samples but not in three out of the four adult samples. The inbreeding level at the reproductive age was high only in the sample from Koryakia, which can be explained by a relatively young age of plants in the population frequently affected by fires. A general increase in heterozygosity in the course of ontogeny, characteristic of other conifers as well, was attributed to elimination of inbred progenies and by balancing selection in favor of heterozygotes, which is a key factor maintaining allozyme polymorphism in populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altukhov, Yu.P., Balansing Selection As Maintenance Factor of Allozyme Polymorphism, Usp. Sovrem. Biol., 1989, vol. 107, no. 3, pp. 323–340.

    CAS  Google Scholar 

  2. Altukhov, Yu.P., Population Genetics: Diversity and Stability, London: Harwood Academic, 1990.

    Google Scholar 

  3. Altukhov, Yu.P., Intraspecific Genetic Diversity: Monitoring and Conservation, Russ. J. Genet., 1995, vol. 31, no. 10, pp.1133–1154.

    Google Scholar 

  4. Altukhov, Yu.P., Allozyme Heterozygosity, Sexual Maturation Rate, and Longevity, Russ. J. Genet., 1998, vol. 34, no. 7, pp. 751–760.

    CAS  Google Scholar 

  5. Altukhov, Yu.P., Genome Heterozygosity, Metabolism Intensity, and Lifespan, Dokl. Akad. Nauk, 1999, vol. 369, no. 5, pp. 704–707

    PubMed  Google Scholar 

  6. Altukhov, Yu.P., Gafarov, N.I., Krutovskii, K.V., and Dukharev, V.A., Allozyme Variability in Natural Populations of Norway Spruce (Picea abies (L.) Karst.): III. Correlation between Levels of Individual Heterozygosity and Relative Number of Unviable Seeds, Genetika (Moscow), 1986, vol. 22, no. 12, pp. 2825–2830.

    Google Scholar 

  7. Bush, R.M. and Smouse, P.E., The Impact of Electrophoretic Genotype on Life History Traits in Pinus taeda, Evolution, 1991, vol. 45, no. 3, pp. 481–498.

    Article  Google Scholar 

  8. Bush, R.M. and Smouse, P.E., Evidence for the Adaptive Significance of Allozymes in Forest Trees, New Forests, 1992, vol. 6, nos. 1–4, pp. 179–196.

    Article  Google Scholar 

  9. Bush, R.M., Smouse, P.E., and Ledig, F.T., The Fitness Consequences of Multiple-Locus Heterozygosity: The Relationship between Heterozygosity and Growth Rate in Pitch Pine (Pinus rigida Mill.), Evolution, 1987, vol. 41, no. 4, pp. 787–798.

    Article  Google Scholar 

  10. Politov, D.V., Woody Plants, in Dinamika populyatsionnykh genofondov pri antropogennykh vozdeistviyakh (Dynamics of Population Gene Pools under Anthropogenic Influence), Moscow: Nauka, 2004, pp. 295–350.

    Google Scholar 

  11. Politov, D.V., Krutovsky, K.V., and Altukhov, Yu.P., Isozyme Locus Characteristics of the Gene Pools of Cedar Pine Populations, Genetika (Moscow), 1992, vol. 28, no. 1, pp. 93–114.

    CAS  Google Scholar 

  12. Grosset, G.E., Kedrovyi stlanik (Siberian Dwarf Pine), Moscow: MOIP, 1959, p. 146.

    Google Scholar 

  13. Molozhnikov, V.N., Kedrovyi stlanik gornykh landshaftov severnogo Pribaikal’ya (Siberian Dwarf Pine of Mountain Landscapes in the Northern Baikal Region), Leningrad: Nauka, 1975, p. 203.

    Google Scholar 

  14. Tikhomirov, B.A., Kedrovyi stlanik, ego biologiya i ispol’zovanie (Biology and Usage of Siberian Dwarf Pine), Moscow: MOIP, 1949, p. 106.

    Google Scholar 

  15. Krutovskii, K.V., Politov, D.V., and Altukhov, Y.P., Study of Genetic Differentiation and Phylogeny of Stone Pine Species Using Isozyme Loci, Proc. Int. Workshop on Subalpine Stone Pines and Their Environment: The Status of Our Knowledge, Ogden, Utah: USDA Forest Service Intermountain Res. Stat., 1994, pp. 19–30.

    Google Scholar 

  16. Krutovsky, K.V., Politov, D.V., and Altukhov, Yu.P., Isozyme Study of Population Genetic Structure, Mating System and Phylogenetic Relationships of the Five Stone Pine Species (Subsection Cembrae, Section Strobi, Subgenus Strobus), Population Genetics and Genetic Conservation of Forest Trees (Proc. Int. Symp., Carcans Maubuisson, France, 1995), Amsterdam: SPB Acad., 1995, pp. 279–304.

    Google Scholar 

  17. Politov, D.V. and Krutovskii, K.V., Allozyme Polymorphism, Heterozygosity, and Mating System of Stone Pines (Pinus, Subsection Cembrae), Proc. Int. Workshop on Subalpine Stone Pines and Their Environment: The Status of Our Knowledge, Ogden, Utah: USDA Forest Service Intermountain Res. Stat., 1994, pp. 36–42.

    Google Scholar 

  18. Krutovskii, K.V., Politov, D.V., and Altukhov, Yu.P., Interspecific Genetic Differentiation of Eurasian Stone Pines for Isozyme Loci, Genetika (Moscow), 1990, vol. 26, no. 4, pp. 694–707.

    Google Scholar 

  19. Goncharenko, G.G., Padutov, V.E., and Silin, A.E., Allozyme Variation in Natural Populations of Eurasian Pines: I. Population Structure, Genetic Variation and Differentiation in Pinus pumila (Pall.) Regel from Chukotsk and Sakhalin, Silvae Genet., 1993, vol. 42, nos. 4–5, pp. 237–253.

    Google Scholar 

  20. Goncharenko, G.G., Genosistematika i evolyutsionnaya filogeniya lesoobrazuyushchikh khvoinykh Palearktiki (Gene Systematics and Evolutional Phylogeny of Forest-Forming Palearctic Conifers), Minsk: Tekhnalogiya, 1999, p. 192.

    Google Scholar 

  21. Goncharenko, G.G., Padutov, V.E., and Silin, A.E., The Degree of Genetic Subdivision and Differentiation in Natural Populations of Stone Pines, Dokl. Akad. Nauk SSSR, 1991, vol. 317, no. 6, pp. 1477–1483.

    Google Scholar 

  22. Goncharenko, G.G., Padutov, V.E., and Silin, A.E., Genetic Variation and Differentiation of Pinus pumila (Rall.) Regel in Populations of Chukotka and Sakhalin, Genetika (Moscow), 1992, vol. 28, no. 7, pp. 107–119.

    Google Scholar 

  23. Goncharenko, G.G. and Silin, A.E., Populyatsionnaya i evolyutsionnaya genetika sosen Vostochnoi Evropy i Sibiri (Population and Evolutional Genetics of East European and Siberian Pines), Minsk: Tekhnalogiya, 1997.

    Google Scholar 

  24. Politov, D.V. and Krutovsky, K.V., Phylogenetics, Genogeography and Hybridization of 5-Needle Pines in Russia and Neighboring Countries, Five-Needle Pine Species: Genetic Improvement, Disease Resistance, and Conservation (IUFRO Working Party 2.02.15, 2001 Proceedings RMRS-P-032), Ogden, Utah: USDA Forest Service, Rocky Mountain Res. Stat., 2004, pp. 85–97.

    Google Scholar 

  25. Maluchenko, O.P. and Altukhov, Yu.P., The Effect of Individual Heterozygosity on Seed-Bearing Characteristics of Siberian Dwarf Pine Pinus pumila (Pall.) Regel, Dokl. Akad. Nauk, 2001, vol. 384, no. 3, pp. 418–421

    Google Scholar 

  26. Maluchenko, O.P., Politov, D.V., Belokon’, Yu.S., and Belokon’, M.M., Genetic Differentiation of Siberian Dwarf Pine Pinus pumila (Pall.) Regel in the Baikal Region, Ecology and Genetics of Populations, Ioshkar-Ola: Periodika Marii El, 1998, pp. 38–45.

    Google Scholar 

  27. Tani, N., Tomaru, N., Araki, M., and Ohba, K., Genetic Diversity and Differentiation in Populations of Japanese Stone Pine (Pinus pumila) in Japan, Can. J. Forest Res., 1996, vol. 26, no. 8, pp. 1454–1462.

    Google Scholar 

  28. Tani, N., Tomaru, N., Tsumura, Y., et al., Genetic Structure within a Japanese Stone Pine (Pinus pumila Regel) Population on Mt. Aino-Dake in Central Honshu, Japan, J. Plant Res., 1998, vol. 111, no. 1101, pp. 7–15.

    Google Scholar 

  29. Watano, Y., Imazu, M., and Shimizu, T., Chloroplast DNA Typing by PCR-SSCP in the Pinus pumila and P. parviflora var. pentaphylla Complex (Pinaceae), J. Plant Res., 1995, vol. 108, no. 1092, pp. 493–499.

    Article  CAS  Google Scholar 

  30. Watano, Y., Imazu, M., and Shimizu, T., Spatial Distribution of cpDNA and mtDNA Haplotypes in a Hybrid Zone between Pinus pumila and P. parviflora var. pentaphylla (Pinaceae), J. Plant Res., 1996, vol. 109, no. 1096, pp. 403–408.

    Article  CAS  Google Scholar 

  31. Watano, Y., Kanai, A., and Tani, N., Genetic Structure of Hybrid Zones between Pinus pumila and P. parviflora var. pentaphylla (Pinaceae) Revealed by Molecular Hybrid Index Analysis, Am. J. Bot., 2004, vol. 91, no. 1, pp. 65–72.

    CAS  Google Scholar 

  32. Clayton, J.W. and Tretiak, D.N., Amino-Citrate Buffers for pH Control in Starch Gel Electrophoresis, J. Fish. Res. Board Can., 1972, vol. 29, pp. 1169–1172.

    CAS  Google Scholar 

  33. Markert, C.L. and Faulhaber, I., Lactate Dehydrogenase Isozyme Patterns in Fish, J. Exp. Zool., 1965, vol. 159, no. 2, pp. 319–332.

    Article  PubMed  CAS  Google Scholar 

  34. Ridgeway, Y.J., Sherburne, S.W., and Lewis, R.D., Polymorphisms in the Esterases of Atlantic Herring, Trans. Am. Fish. Soc., 1970, vol. 99, pp. 147–151.

    Article  Google Scholar 

  35. Politov, D.V., Belokon, M.M., Maluchenko, O.P., et al., Genetic Evidence of Natural Hybridization between Siberian Stone Pine, Pinus sibirica Du Tour, and Dwarf Siberian Pine, P. pumila (Pall.) Regel, Forest Genet., 1999, vol. 6, no. 1, pp. 41–48.

    Google Scholar 

  36. Belokon, M.M., Belokon Yu S., Politov D.V., and Altukhov Yu. P., Allozyme Polymorphism of Swiss Stone Pine Pinus cembra L. in Mountain Populations of the Alps and the Eastern Carpathians, Russ. J. Genet., 2005, vol. 41, pp. 1268–1280.

    Article  CAS  Google Scholar 

  37. Krutovskii, K.V., Politov, D.V., and Altukhov, Yu.P., Genetic Variability in Siberian Stone Pine Pinus sibirica Du Tour: I. Genetic Control of Isozyme Systems, Genetika (Moscow), 1987, vol. 23, no. 12, pp. 2216–2228.

    Google Scholar 

  38. Politov, D.V., Allozyme Polymorphism, Genetic Differentiation and Mating System of Siberian Stone Pine Pinus sibirica Du Tour, Cand. Sci. (Biol.) Dissertation, Moscow: Inst. Gen. Genet., 1989.

    Google Scholar 

  39. Peakall, R. and Smouse, P.E., GenAlEx V6: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research, Mol. Ecol. Notes, 2006, vol. 6, no. 1, pp. 288–295.

    Article  Google Scholar 

  40. Wright, S., The Interpretation of Population Structure by F-Statistics with Special Regard to Systems of Mating, Evolution, 1965, vol. 19, pp. 355–420.

    Article  Google Scholar 

  41. Ritland, K., Estimation of Mating Systems, in Isozymes in Plant Genetics and Breeding, Amsterdam: Elsevier, 1983, pp. 289–302.

    Google Scholar 

  42. Ritland, K. and Jain, S., A Model for the Estimation of Outcrossing Rate and Gene Frequencies Using n Independent Loci, Heredity, 1981, vol. 47, no. 1, pp. 35–52.

    Google Scholar 

  43. Danzmann, R.G. and Buchert, G.P., Isozyme Variability in Central Ontario Jack Pine (Pinus banksiana), Proc. 28th Northeastern Forest Tree Improvement Conf., 1983, pp. 232–248.

  44. Delgado, P., Pinero, D., Chaos, A., et al., High Population Differentiation and Genetic Variation in the Endangered Mexican Pine Pinus rzedowskii (Pinaceae), Am. J. Botany, 1999, vol. 86, no. 5, pp. 669–676.

    Article  Google Scholar 

  45. El-Kassaby, Y.A., Meagher, M.D., Parkinson, J., and Portlock, F.T., Allozyme Inheritance, Heterozygosity and Outcrossing Rate among Pinus monticola Near Ladysmith, British Columbia, Heredity, 1987, vol. 58, no. 2, pp. 173–181.

    Google Scholar 

  46. Epperson, B.K. and Allard, R.W., Allozyme Analysis of the Mating System in Lodgepole Pine Populations, J. Hered., 1984, vol. 75, pp. 212–214.

    Google Scholar 

  47. Fady, B. and Westfall, R.D., Mating System Parameters in a Natural Population of Abies borisii-regis Mattfeld, Annales des Sciences Forestieres, 1997, vol. 54, no. 7, pp. 643–647.

    Google Scholar 

  48. Fins, L. and Libby, W.J., Population Variation in Sequoiadendron: Seed and Seedling Studies, Vegetative Propagation and Isozyme Variation, Silvae Genet., 1982, vol. 31, no. 4, pp. 102–110.

    Google Scholar 

  49. Fins, L. and Seeb, L.W., Genetic Variation in Allozymes of Western Larch, Can. J. Forest Res., 1986, vol. 16, no. 5, pp. 1013–1018.

    CAS  Google Scholar 

  50. King, J.N., Dancik, B.P., and Dhir, N.K., Genetic Structure and Mating System in White Spruce (Picea glauca) in a Seed Production Area, Can. J. Forest Res., 1984, vol. 14, pp. 639–643.

    Google Scholar 

  51. Lewandowski, A., Burczyk, J., and Mejnartowicz, L., Genetic Structure and the Mating System in an Old Stand of Polish Larch, Silvae Genet., 1991, vol. 40, no. 2, pp. 75–79.

    Google Scholar 

  52. Muona, O., Yazdani, R., and Rudin, D., Genetic Change between Life Stages in Pinus sylvestris: Allozyme Variation in Seeds and Planted Seedlings, Silvae Genet., 1987, vol. 36, no. 1, pp. 39–42.

    Google Scholar 

  53. Shea, K.L., Mating System and Population Structure in Engelmann Spruce and Subalpine Fir, Ph. D. Thesis, Boulder, CO: Univ. Colorado, 1985.

    Google Scholar 

  54. Shea, K.L., Effects of Population Structure and Cone Production on Outcrossing Rates in Engelmann Spruce and Subalpine Fir, Evolution, 1987, vol. 41, no. 1, pp. 124–136.

    Article  Google Scholar 

  55. Politov, D.V. and Krutovskii, K.V., Genetic Variability in Siberian Stone Pine Pinus sibirica Du Tour: V. Analysis of Mating System, Genetika (Moscow), 1990, vol. 26, no. 11, pp. 2002–2011.

    Google Scholar 

  56. Furnier, G.R., Knowles, P., Clyde, M.A., and Dancik, B.P., Effects of Avian Seed Dispersal on the Genetic Structure of Whitebark Pine Populations, Evolution, 1987, vol. 41, no. 3, pp. 607–612.

    Article  Google Scholar 

  57. Tomback, D.F., Holtmeier, F.K., Mattes, H., et al., Tree Clusters and Growth Form Distribution in Pinus cembra, a Bird-Dispersed Pine, Arctic Alpine Res., 1993, vol. 25, no. 4, pp. 374–381.

    Article  Google Scholar 

  58. Critchfield, W.B. and Little, E.L., Geographic Distribution of the Pines of the World, Washington, DC: US Dep. Agricult., 1996, p. 98.

    Google Scholar 

  59. Belokon’, M.M., Politov, D.V., Belokon’, Yu.S., et al., Genetic Differentiation in White Pines of the Section Strobus: Isozyme Analysis Data, Dokl. Akad. Nauk, 1998, vol. 358, no. 5, pp. 699–702.

    CAS  Google Scholar 

  60. Dancik, B.P. and Yeh, F.C., Allozyme Variability and Evolution of Lodgepole Pine (Pinus contorta var. latifolia) and Jack Pine (P. banksiana) in Alberta, Can. J. Genet. Cytol., 1983, vol. 25, no. 1, pp. 57–64.

    Google Scholar 

  61. Guries, R.P. and Ledig, F.T., Genetic Diversity and Population Structure in Pitch Pine (Pinus rigida Mill.), Evolution, 1982, vol. 36, no. 2, pp. 387–402.

    Article  Google Scholar 

  62. Knowles, P., Genetic Variability among and within Closely Spaced Populations of Lodgepole Pine, Can. J. Genet. Cytol., 1984, vol. 26, no. 2, pp. 177–184.

    Google Scholar 

  63. Plessas, M.E. and Strauss, S.H., Allozyme Differentiation among Populations Stands and Cohorts in Monterey Pine, Can. J. Forest Res., 1986, vol. 16, no. 6, pp. 1155–1164.

    CAS  Google Scholar 

  64. Korshikov, I.I., Mudrik E.A. Genetic Heterogeneity of Seed Crop in Crimea Pine Natural Populations of Different Years, Faktori eksperimental’noi evolyutsii organizmiv (Factors of Experimental Evolution of Organisms), Kiev: Agrarna Dumka, 2004, pp. 234–238.

    Google Scholar 

  65. Korshikov, I.I., Mudrik, E.A., and Terlyga, N.S., Analysis of Genetic Heterogeneity of Seed Embryos in Populations of Crimea Pine with Different Seed Productivity (Pinus pallasiana D. Don) in Crimea, Tsitol. Genet., 2005, vol. 39, no. 2, pp. 27–33.

    PubMed  CAS  Google Scholar 

  66. Strobeck, C., Partial Selfing and Linkage: The Effect of a Heterotic Locus on a Neutral Locus, Genetics, 1979, vol. 92, pp. 305–315.

    Google Scholar 

  67. Yazdani, R. and Lindgren, D., The Impact of Self-Pollination on Production of Sound Selfed Seeds, Biochemical Markers in the Population Genetics of Forest Trees (Proc. Int. Workshop, Porano-Orvieto, Italy, 1988), The Hague: SPB Acad. Publ. B.V., 1991, pp. 143–147.

    Google Scholar 

  68. Yazdani, R., Muona, O., Rudin, D., and Szmidt, A.E., Genetic Structure of a Pinus sylvestris L. Seed-Tree Stand and Naturally Regenerated Undestroy, Forest Sci., 1985, vol. 31, pp. 430–436.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.V. Politov, M.M. Belokon, Yu.S. Belokon, 2006, published in Genetika, 2006, Vol. 42, No. 10, pp. 1348–1358.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Politov, D.V., Belokon, M.M. & Belokon, Y.S. Dynamics of allozyme heterozygosity in Siberian dwarf pine Pinus pumila (Pall.) Regel populations of the Russian Far East: Comparison of embryos and maternal plants. Russ J Genet 42, 1127–1136 (2006). https://doi.org/10.1134/S102279540610005X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279540610005X

Keywords

Navigation