Skip to main content
Log in

Effect of Ca2+ and cAMP on protein phosphorylation in mitochondria of maize seedlings

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The effect of common intracellular signals (Ca2+ and cAMP) on the activity of protein phosphorylation in mitochondria was investigated in coleoptiles of maize (Zea mays L.). Treatment of isolated mitochondria with 2 mM CaCl2 brought about an increase in the level of phosphorylation of proteins with mol ws of 74, 60, and 33 kD but considerably reduced phosphorylation of the protein with a mol wt of 51.5 kD. In the presence of Ca2+, phosphorylation of polypeptides with mol wts of 59 and 66 kD was also detected. cAMP considerably reduced phosphorylation of essentially all the investigated proteins in isolated mitochondria, which could be explained by activation of their dephosphorylation. Phosphorylation of mitochondrial proteins involves a polypeptide of about 94 kD showing kinase activity, which may be proper protein kinase or one of the subunits of a compound structure. In maize mitochondria, PP1A phosphatases were found. A hypothesis was advanced that redox-dependent phosphorylation/dephosphorylation of mitochondrial proteins plays an important role in mitochondrial signaling in higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BC:

buffer for chromatography

HSP:

heat shock proteins

MnSOD:

superoxide dismutase containing Mn

MPT:

mitochondrial permeability transition

PMSF:

phenylmethylsulfonyl fluoride

References

  1. Pagliarini, D.J. and Dixon, J.E., Mitochondrial Modulation: Reversible Phosphorylation Takes Center Stage? Trends Biochem. Sci., 2006, vol. 31, pp. 26–34.

    Article  CAS  PubMed  Google Scholar 

  2. Pfannschmidt, T., Chloroplast Redox Signals: How Photosynthesis Controls Its Own Genes, Trends Plant Sci., 2003, vol. 8, pp. 33–41.

    Article  CAS  PubMed  Google Scholar 

  3. Subota, I.Yu., Arziev, A.Sh., and Konstantinov, Yu.M., The Involvement of Protein Phosphorylation/Dephosphorylation in the Redox Control of Translation in Cereal Mitochondria, Russ. J. Plant Physiol., 2004, vol. 51, pp. 784–789.

    Article  CAS  Google Scholar 

  4. Juszczuk, I.M., Bykova, N.V., and Moller, I.M., Protein Phosphorylation in Plant Mitochondria, Physiol. Plant., 2007, vol. 129, pp. 90–103.

    Article  CAS  Google Scholar 

  5. Wang, D., Harper, J.F., and Gribskov, M., Systematic Trans-Genomic Comparison of Protein Kinases between Arabidopsis and Saccharomyces cerevisiae, Plant Physiol., 2003, vol. 132, pp. 2152–2165.

    Article  CAS  PubMed  Google Scholar 

  6. Manning, G., Whyte, D.B., Martinez, R., Hunter, T., and Sudarsanam, S., The Protein Kinase Complement of the Human Genome, Science, 2002, vol. 298, pp. 1912–1934.

    Article  CAS  PubMed  Google Scholar 

  7. Bykova, N.V., Egsgaard, H., and Moller, I.M., Identification of 14 New Phosphoproteins Involved in Important Plant Mitochondrial Processes, FEBS Lett., 2003, vol. 540, pp. 141–146.

    Article  CAS  PubMed  Google Scholar 

  8. Lund, A.A., Rhoads, D.M., Lund, A.L., Cerny, R.L., and Elthon, T.E., In Vivo Modifications of the Maize Mitochondrial Small Heat Stress Protein, HSP22, J. Biol. Chem., 2001, vol. 276, pp. 924–929.

    Article  Google Scholar 

  9. Moller, I.M., Plant Mitochondria and Oxidative Stress. Electron Transport, NADPH Turnover and Metabolism of Reactive Oxygen Species, Annu. Rev. Plant Physiol. Plant Mol. Biol., 2001, vol. 52, pp. 561–591.

    Article  CAS  PubMed  Google Scholar 

  10. Subota, I.Yu., Arziev, A.Sh., Senzhenko, L.P., Tarasenko, V.I., and Konstantinov, Yu.M., Inhibitor Analysis of Protein Phosphorylation/Dephosphorylation in Maize Mitochondria in Relation to Redox Conditions, Russ. J. Plant Physiol., 2007, vol. 54, pp. 343–349.

    Article  CAS  Google Scholar 

  11. Papa, S., Sardanelli, A.M., Scacco, S., Petruzzella, V., Technikova-Dobrova, Z., Vergari, R., and Signorile, A., The NADH: Ubiquinone Oxidoreductase (Complex I) of the Mammalian Respiratory Chain and the cAMP Cascade, J. Bioenerg. Biomembr., 2002, vol. 34, pp. 1–10.

    Article  CAS  PubMed  Google Scholar 

  12. Livigni, A., Scorziello, A., Agnese, S., Andronetto, A., Carlucci, A., Garbi, C., Castaldo, I., Annunziato, L., Avvedimento, E.V., and Feliciello, A., Mitochondrial AKAP121 Links cAMP and Scr Signaling to Oxidative Metabolism, Mol. Biol. Cell, 2006, vol. 17, pp. 263–271.

    Article  CAS  PubMed  Google Scholar 

  13. Assmann, S.M., Cyclic AMP as Second Messenger in Higher Plants, Plant Physiol., 1995, vol. 108, pp. 885–889.

    CAS  PubMed  Google Scholar 

  14. Konstantinov, Yu.M., Lutsenko, G.N., and Podsosonny, V.A., Inhibition of Adenine Nucleotide Translocation in Maize Seedling Mitochondria by Anionic Detergents, Physiol. Plant., 1988, vol. 72, pp. 403–406.

    Article  CAS  Google Scholar 

  15. Geahlen, R.L., Austario, M., Low, P.S., and Harrison, M.L., Detection of Protein Kinase Activity in Sodium Dodecyl Sulfate Polyacrylamide Gels, Anal. Biochem., 1986, vol. 153, pp. 151–158.

    Article  CAS  PubMed  Google Scholar 

  16. Laemmli, U.K., Cleavage of Structural Proteins during the Assembly of Head of Bacteriophage T4, Nature, 1970, vol. 277, pp. 174–182.

    Google Scholar 

  17. Struglics, A., Fredlund, K.M., Konstantinov, Yu.M., Allen, J.F., and Moller, I.M., Protein Phosphorylation/Dephosphorylation in the Inner Membrane of Potato Tuber Mitochondria, FEBS Lett., 2000, vol. 475, pp. 213–217.

    Article  CAS  PubMed  Google Scholar 

  18. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein Measurements with the Folin Phenol Reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    CAS  PubMed  Google Scholar 

  19. Hulley, P. and Davison, A., Regulation of Tyrosine Phosphorylation Cascades by Phosphatases: What the Actions of Vanadium Teach Us, J. Trace Elem. Exp. Med., 2003, vol. 16, pp. 281–290.

    Article  CAS  Google Scholar 

  20. Konstantinov, Yu.M., Subota, I.Yu., and Arziev, A.Sh., Effect of Glutathione Redox System on Maize Mitochondrial Translation Activity, Dokl. Akad. Nauk, 1999, vol. 365, pp. 126–128.

    CAS  Google Scholar 

  21. Feliciello, A., Gottesman, M.E., and Avvedimento, E.V., cAMP-PKA Signaling to the Mitochondria: Protein Scaffolds, mRNA and Phosphatases, Cell Signal., 2005, vol. 17, pp. 279–287.

    Article  CAS  PubMed  Google Scholar 

  22. Signorile, A., Sardanelli, A.M., Nuzzi, R., and Papa, S., Serine (Threonine) Phosphatase(s) Acting on cAMP-Dependent Phosphoproteins in Mammalian Mitochondria, FEBS Lett., 2002, vol. 512, pp. 91–92.

    Article  CAS  PubMed  Google Scholar 

  23. Hepler, P.K., Calcium: A Central Regulator of Plant Growth and Development, Plant Cell, 2005, vol. 17, pp. 2142–2155.

    Article  CAS  PubMed  Google Scholar 

  24. Virolainen, E., Blokhina, O., and Fagerstedt, K., Ca2+-Induced High Amplitude Swelling and Cytochrome c Release from Wheat (Triticum aestivum L.) Mitochondria under Anoxic Stress, Ann. Bot., 2005, vol. 90, pp. 509–516.

    Article  Google Scholar 

  25. Bernardi, P., Scorrano, L., Collona, R., Peronilli, V., and di Lisa, F., Mitochondria and Cell Death. Mechanistic Aspects and Methodological Issues, Eur. J. Biochem., 1999, vol. 264, pp. 687–701.

    Article  CAS  PubMed  Google Scholar 

  26. Tiwari, B.S., Belenghi, B., and Levine, A., Oxidative Stress Increased Respiration and Generation of Reactive Oxygen Species, Resulting in ATP Depletion, Opening of Mitochondria Permeability Transition, and Programmed Cell Death, Plant Physiol., 2002, vol. 128, pp. 1271–1281.

    Article  CAS  PubMed  Google Scholar 

  27. Petrussa, E., Casolo, V., Braidot, E., Chiandussi, E., Macri, F., and Vianello, A., Cyclosporin A Induces the Opening of a Potassium-Selective Channel in Higher Plant Mitochondria, J. Bioenerg. Biomembr., 2001, vol. 33, pp. 107–117.

    Article  CAS  PubMed  Google Scholar 

  28. Feilner, T., Hultschig, C., Lee, J., Meyer, S., Immink, R.G.H., Koening, A., Possling, A., Seitz, H., Beveridge, A., Scheel, D., Cahill, D.J., Lehrach, H., Kreutzberger, J., and Kersten, B., High Throughput Identification of Potential Arabidopsis Mitogen-Activated Protein Kinases Substrates, Mol. Cell. Proteomics, 2005, vol. 4, pp. 1558–1568.

    Article  CAS  PubMed  Google Scholar 

  29. Hopper, R.K., Carroll, S., Aponte, A.M., Johnson, D.T., French, S., Shen, R.-F., Witzmann, F.A., Harris, R.A., and Balaban, R.S., Mitochondrial Matrix Phosphoproteome: Effect of Extra Mitochondrial Calcium, Biochemistry, 2006, vol. 45, pp. 2524–2536.

    Article  CAS  PubMed  Google Scholar 

  30. Azarashvilli, T.S., Tyynela, J., Odinokova, I.V., Grigorjev, P.A., Baumann, M., Evdodienko, Y.M., and Saris, N.E., Phosphorylation of Peptide Related to Subunit c of the F0F1-ATPase/ATP Synthase and Relationship to Permeability Transition Pore Opening in Mitochondria, J. Bioenerg. Biomembr., 2002, vol. 34, pp. 279–284.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Subota.

Additional information

Original Russian Text © I.Yu. Subota, A.Sh. Arziev, L.P. Senzhenko, V.I. Tarasenko, G.A. Nevinskii, Yu.M. Konstantinov, 2010, published in Fiziologiya Rastenii, 2010, vol. 57, No. 1, pp. 42–49.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subota, I.Y., Arziev, A.S., Senzhenko, L.P. et al. Effect of Ca2+ and cAMP on protein phosphorylation in mitochondria of maize seedlings. Russ J Plant Physiol 57, 37–44 (2010). https://doi.org/10.1134/S102144371001005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102144371001005X

Key words

Navigation