Skip to main content
Log in

Residual Melt after the Crystallization of Oxide Gabbro: An Example of a Silicic Product of MORB Differentiation in the Modern Oceanic Crust, Ashadze Complex, Central Atlantic

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The plutonic rocks studied in the Ashadze Complex contain four groups of mineral assemblages: (I) coarse-grained gabbronorite, which is dominant; (IIa) micrograined differentiated gabbro (oxide microgabbro) enriched in ilmenite and apatite and sporadically containing zircon grains smaller than 70 µm; (IIb) local oxide microgabbro aggregates with zircon grains as large as 200 µm and quartz; and (III) biotite- and orthopyroxene-bearing plagiogranite veinlets. As an interpretation, a model of sequential differentiation of MORB-type melt is proposed. The compositional variations of the plagioclase and orthopyroxene are consistent with the general sequence of crystal fractionation and show partial overlap of assemblages (II) and (III). In the sequence of zircon-bearing assemblages (IIa), (IIb), and (III), zircon shows a systematic enrichment in Hf. Zircon of assemblage (IIb) hosts melt inclusions. The inclusions were completely remelted at 910°C and quenched into homogeneous glass. The analyzed granitoid (75–76 wt % SiO2) water-bearing (H2O ~ 3 wt %) composition of the inclusions was interpreted as a residual melt after crystallization of the evolved vein gabbro rich in ilmenite. The results offer an example of an evolved granitoid product of MORB differentiation and are consistent with high-degree magmatic differentiation in the oceanic crust, a model according to which the crystallization of evolved oxide gabbro results in a residual silicic melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. Supplementary materials for the Russian and English on-line versions of this paper are available for the authorized reader at https://elibrary.ru/ and http://link.springer.com/. See ESM_1.xlsx (Suppl. 1) for the composition of the plagioclase; ESM_2.xlsx (Suppl. 2) for the composition of the orthopyroxene; ESM_3.xlsx (Suppl. 3) for the composition of the clinopyroxene; ESM_4.xlsx (Suppl. 4) for the composition of the zircon.

REFERENCES

  1. Acosta-Vigil, A., Barich, A., Bartoli, O., et al., The composition of nanogranitoids in migmatites overlying the ronda peridotites (betic cordillera, s spain): the anatectic history of a polymetamorphic basement, Contrib. Mineral. Petrol., 2016, vol. 171, no. 3, p. 24. https://doi.org/10.1007/s00410-016-1230-3

    Article  Google Scholar 

  2. Andreeva, O.A., Yarmolyuk, V.V., Andreeva, I.A., and Borisovskiy, S.E., Magmatic evolution of Changbaishan Tianchi Volcano, China–North Korea: evidence from mineral-hosted melt and fluid inclusions, Petrology, 2018, vol. 26, no. 5, pp. 515–545.

    Article  Google Scholar 

  3. Aranovich, L., Zircon solubility in silicate melts: new experiments and probability of zircon crystallization in deeply evolved basic melts, Chem. Geol., 2019, vol. 510, pp. 103–112.

    Article  Google Scholar 

  4. Aranovich, L.Ya. and Bortnikov, N.S., New Zr–Hf geothermometer for magmatic zircons, Petrology, 2018, vol. 26, no. 2, pp. 115–120.

    Article  Google Scholar 

  5. Aranovich, L.Ya., Bortnikov, N.S., Serebryakov, N.S., and Sharkov, E.V., Conditions of the Formation of Plagiogranite from the Markov Trough, Mid-Atlantic Ridge, 5°52′–6°02′ N, Dokl. Earth Sci., 2010, vol. 434, no. 3, pp. 1257–1262.

    Article  Google Scholar 

  6. Aranovich, L.Y., Newton, R.S., and Manning, C.E., Brine-assisted anatexis: experimental melting in the system haplogranite–H2O–NaCl–KCl at deep-crustal conditions, Earth Planet. Sci. Lett., 2013, vol. 374, pp. 111–120. https://doi.org/10.1016/j.epsl.2013.05.027

    Article  Google Scholar 

  7. Beltenev, V., Neschertov, A., Shilov, V., et al., New discoveries at 12°58′ N, 44°52′ W, MAR: Professor Logatchev-22 Cruise, initial results, InterRidge News, 2003, no. 12, pp. 13–14.

  8. Beltenev, V., Ivanov, V., Shagin, A., et al., New hydrothermal sites at 13° N, Mid-Atlantic Ridge, InterRidge News, 2005, no. 14, pp. 14–16.

  9. Borisov, A. and Aranovich, L., Zircon solubility in silicate melts. New experiments and probability of zircon crystallization in deeply evolved basic melts, Chem. Geol., 2019, vol. 510, pp. 102–112. https://doi.org/10.1016/j.chemgeo.2019.02.019

  10. Brunelli, D., Sanfilippo, A., Bonatti, E., et al., Origin of oceanic ferrodiorites by injection of nelsonitic melts in gabbros at the Vema lithospheric section, Mid Atlantic Ridge, Lithos, 2020, pp. 368–369.

  11. Charlier, B. and Grove, T.L., Experiments on liquid immiscibility along tholeiitic liquid lines of descent, Contrib. Mineral. Petrol., 2012, vol. 164, pp. 27–44.

    Article  Google Scholar 

  12. Chen, Y., Niu, Y., Wang, X., et al., Petrogenesis of ODP Hole 735B (leg 176) oceanic plagiogranite: partial melting of gabbros or advanced extent of fractional crystallization?, Geochem. Geophys. Geosyst., 2019, vol. 20, pp. 2717–2732.

    Article  Google Scholar 

  13. Ciazela, J., Koepke, J., Dick, H.J.B., and Muszynski, A., Mantle rock exposures at oceanic core complexes along mid-ocean ridges, Geologos, 2015, vol. 21, no. 4, pp. 207–231. https://doi.org/10.1515/logos-2015-0017

    Article  Google Scholar 

  14. Coleman, R.G., Ophiolites, Berlin–Heidelberg: Springer, 1977.

    Book  Google Scholar 

  15. Coogan, L.A., Mitchell, N.C., and O’Hara, M.J., Roof assimilation at fast spreading ridges: an investigation combining geophysical, geochemical, and field evidence, J. Geophys. Res., 2002, vol. 108, no. (B1). 2003.https://doi.org/10.1029/2001JB001171

  16. Dick, H.J.B., Macleod, C.J., Blum, P., et al., Expedition 360 summary, Southwest Indian Ridge Lower Crust and Moho. Proc. ODP, Sci. Results, Eds. MacLeod, C.J., Dick, H.J.B., Blum, P., and the Expedition 360 Scientists, 360: College Station, TX (Ocean Drilling Program), 2017. https://doi.org/10.14379/iodp.proc.360.102.2017

  17. Dick, H.J.B., Natland, J.H., Alt, J.C., et al., A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge, Earth Planet. Sci. Lett., 2000, vol. 179, pp. 31–51.

  18. Dixon, S. and Rutherford, M.J., Plagiogranites as latestage immiscible liquids in ophiolite and mid-ocean ridge suites: an experimental study, Earth Planet. Sci. Lett., 1979, vol. 45, pp. 45–60.

    Article  Google Scholar 

  19. Koepke, J., Feig, S.T., Snow, J., and Freise, M., Petrogenesis of oceanic plagiogranites by partial melting of gabbros: an experimental study, Contrib. Mineral. Petrol., 2004, vol. 146, pp. 414–432.

    Article  Google Scholar 

  20. Koepke, J., Feig, S.T., and Snow, J., Hydrous partial melting within the lower oceanic crust, Terra Nova, 2005, vol. 17, pp. 286–291.

    Article  Google Scholar 

  21. Koepke, J., Berndt, J., Feig, S.T., and Holtz, F., The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros, Contrib. Mineral. Petrol., 2007, vol. 153, pp. 67–84.

    Article  Google Scholar 

  22. Koepke, J., Botcharnikov, R.E., and Natland, J.H., Crystallization of late-stage MORB under varying water activities and redox conditions: implications for the formation of highly evolved lavas and oxide gabbro in the ocean crust, Lithos, 2018, vol. 323, pp. 58–77.

    Article  Google Scholar 

  23. Kostitsyn Yu.A., Silant’ev S.A., Belousova E.A., et al., Time of the formation of the oceanic core complex of the Ashadze hydrothermal field in the Mid-Atlantic Ridge (12°58′ N): evidence from zircon study, Dokl. Earth Sci., 2012, vol. 447, no. 4, pp. 424-428.

    Article  Google Scholar 

  24. Linnen, R.L. and Keppler, H., Melt composition control of Zr/Hf fractionation in magmatic processes, Geochim. Cosmochim. Acta, 2002, vol. 66, no. 18, pp. 3293–3301.

    Article  Google Scholar 

  25. Natland, J.H. and Dick, H.J., Stratigraphy and composition of gabbros drilled in ocean drilling program Hole 735B, Southwest Indian Ridge: a synthesis of geochemical data Proc. ODP, Sci. Results, 2002, vol. 176, pp. 1–69.

  26. Natland, J.H. and Dick, H.J., Paired melt lenses at the east pacific rise and the pattern of melt flow through the gabbroic layer at a fast-spreading ridge, Lithos, 2009, vol. 112, pp. 73–86.

    Article  Google Scholar 

  27. Natland, J.H., Meyer, P.S., Dick, H.J., and Bloomer, S.H., Magmatic oxides and sulfides in gabbroic rocks from Hole 735B and the later development of the liquid line of descent, Proc. ODP, Sci. Results, Von Herzen, R.P., Robinson, P.T., et al., Eds., 1991, vol. 118. pp. 75–111.

  28. Naumov, V.B., Thermometric study of melt inclusions in quartz phenocrysts from quartz porphyries, Geokhimiya, 1969, no. 4, pp. 494–498.

  29. Nguyen, D.K., Morishita, T., Soda, Y., et al., Occurrence of felsic rocks in oceanic gabbros from IODP Hole 1473A: implications for evolved melt migration in the lower oceanic crust, Minerals, 2018, vol. 8, pp. 583–612. https://doi.org/10.3390/min8120583

    Article  Google Scholar 

  30. Niu, Y., Gilmore, T., Mackie, S., Greig, A., and Bach, W., Mineral chemistry, whole-rock compositions, and petrogenesis of Leg 176 gabbros: data and discussion, Proc. ODP, Sci. Results, 2002, vol. 176, pp. 1–60.

    Google Scholar 

  31. Ondréas, H., Cannat, M., Fouquet, Y., and Normand, A., Geological context and vents morphology of the ultramafic-hosted Ashadze hydrothermal areas (Mid-Atlantic Ridge 13° N), Geochem. Geophys. Geosyst., 2012, vol. 13. https://doi.org/10.1029/2012GC004433

  32. Peirce, C., Reveley, G., Robinson, A.H., et al., Constraints on crustal structure of adjacent OCCs and segment boundaries at 13° N on the Mid-Atlantic Ridge, Geophys. J. Int., 2019, vol. 217, pp. 988–1010.

    Article  Google Scholar 

  33. Peirce, C., Robinson, A.H., Funnell, M.J., et al., Magmatism versus serpentinization-crustal structure along the 13°N segment at the Mid-Atlantic Ridge, Geophys. J. Int., 2020, vol. 221, no. 2, pp. 981–1001.

    Article  Google Scholar 

  34. Pertsev, A.N., N, S. Bortnikov, L.Ya. Aranovich, et al., Peridotite–melt interaction under transitional conditions between the spinel and plagioclase facies beneath the Mid-Atlantic Ridge: insight from peridotites at 13°N, Petrology, 2009, vol. 17, no. 2, pp. 124–137.

    Article  Google Scholar 

  35. Sanfilippo, A. and Tribuzio, R., Building of the deepest crust at a fossil slow-spreading centre (Pineto gabbroic sequence, Alpine Jurassic ophiolites), Contrib. Mineral. Petrol., 2013, vol. 165, pp. 705–721. https://doi.org/10.1007/s00410-012-0831-8

    Article  Google Scholar 

  36. Sanfilippo, A., Dick, H.J.B., Marschall, H.R., et al., Emplacement and high-temperature evolution of gabbros of the 16.5° N oceanic core complexes (Mid-Atlantic Ridge): insights into the compositional variability of the lower oceanic crust, Geochem. Geophys. Geosyst., 2019, vol. 20. https://doi.org/10.1029/2018GC007512

  37. Shastry, A., Srivastava, R.K., Chandra, R., and Jenner, G.A., Fe–Ti-enriched mafic rocks from South Andaman ophiolite suite: implication of late stage liquid immiscibility, Current Science-Bangalore, 2001, vol. 80, no. 3, pp. 453–454.

    Google Scholar 

  38. Silantyev, S.A., Aranovich, L.Ya., and Bortnikov, N.S., Oceanic plagiogranites as a result of interaction between magmatic and hydrothermal systems in the slow-spreading mid-ocean ridges, Petrology, 2010, vol. 18, no. 4, pp. 369–383.

    Article  Google Scholar 

  39. Silantyev, S.A., Krasnova, E.A., Cannat, M., et al., Peridotite–gabbro–trondhjemite association of the Mid-Atlantic Ridge between 12°58′ and 14°45′ N: Ashadze and Logachev hydrothermal vent fields, Geochem. Int., 2011, vol. 49, no. 4, pp. 323–354. https://doi.org/10.1134/S0016702911040070

    Article  Google Scholar 

  40. Silantyev, S.A., Kepke, Yu., Ariskin, A.A., et al., Geochemical nature and age of the plagiogranite–gabbronorite association of the oceanic core complex of the Mid-Atlantic Ridge at 5°10′ S, Petrology, 2014, vol. 22, no. 2, pp. 109–127. https://doi.org/10.1134/S0869591114020064

    Article  Google Scholar 

  41. Smith, D.K., Escartin, J., Schouten, H., and Cann, J.R., Fault rotation and core complex formation: significant processes in seafloor formation at slow-spreading mid-ocean ridges (Mid-Atlantic ridge, 13°–15° N), Geochem. Geophys. Geosyst., 2008, vol. 9, p. Q03003. https://doi.org/10.1029/2007GC001699

    Article  Google Scholar 

  42. Wilson, D.S., Teagle, D.A., Alt, J.C., et al., Drilling to gabbro in intact ocean crust, Science, 2006, vol. 312, no. 5776, pp. 1016–1020.

    Article  Google Scholar 

  43. Wolff, P.E., Koepke, J., and Feig, S.T., The reaction mechanism of fluid-induced partial melting of gabbro in the oceanic crust, Eur. J. Mineral, 2013, vol. 25, pp. 279–298.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank S.A. Silantyev and the anonymous reviewer for constructive criticism provided when the paper was prepared to publication.

Funding

The microprobe analyses were carried out at the IGEM Analitika Center for Collective Use. This study was carried out under government-financed research project 121041500220-0 for the Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Sholukhov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sholukhov, K.N., Prokofiev, V.Y., Solovova, I.P. et al. Residual Melt after the Crystallization of Oxide Gabbro: An Example of a Silicic Product of MORB Differentiation in the Modern Oceanic Crust, Ashadze Complex, Central Atlantic. Petrology 30, 25–39 (2022). https://doi.org/10.1134/S0869591122010076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591122010076

Keywords:

Navigation