Skip to main content
Log in

Methods of Detecting Lesions of Upper Motor Neuron in Amyotrophic Lateral Sclerosis using Transcranial Magnetic Stimulation

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Introduction: Coexistent involvement of upper and lower motor neurons is a characteristic feature of amyotrophyc lateral syndrome (ALS) necessary for the diagnosis. Diagnosis of upper motor neuron involvement in ALS is based solely on clinical features, which may not be detected at the disease onset and in rare forms manifesting clinically as the pure lower motor neuron syndrome (LMNS). The main method of assessment of the functional state of the upper motor neuron in ALS is transcranial magnetic stimulation (TMS). It allows assessing the excitability of motor cortex, corticospinal tract function, and mapping of cortical representation of the muscles. In patients with ALS changes of various indicators demonstrating hyperexcitability as well as degenerative lesions of the motor cortex and the corticospinal tracts are recorded on TMS. Objective: to discuss changes in the TMS in patients with ALS, pathophysiological mechanisms of their formation and possible diagnostic value. Results: In 22 patients with LMNS, navigated TMS revealed disturbances of intracortical inhibition on paired stimulation and recording cortical silent period, increase of motor threshold in dominant hemisphere, decrease of the weighted area and reorganization of cortical representations of the hand muscles. Conclusion: The data obtained allow to consider navigated TMS as a promising technology for identifying upper motor neuron involvement in patients with ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Zakharova, M.N., Brylev, L.V., Avdyunina, I.A., et al., Amyotrophic lateral sclerosis, in Nevrologiya. Natsional’noe rukovodstvo (Neurology: National Guide), Gusev, E.I., Konovalov, A.N., and Skvortsova, V.I., Eds., Moscow: GEOTAR-Media, 2018, no. 1, pp. 644–662.

  2. Brooks, B.R., Miller, R.G., Swash, M., et al., El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis, Amyotrophic Lateral Scler. Frontotemporal Degener., 2000, vol. 1, pp. 293–299.

    CAS  Google Scholar 

  3. de Carvalho, M., Dengler, R., Eisen, A., et al., Electrodiagnostic criteria for diagnosis of ALS, Clin. Neurophysiol., 2008, vol. 119, pp. 497–503.https://doi.org/10.1016/j.clinph.2007.09.143

    Article  PubMed  Google Scholar 

  4. Swash, M., Why are upper motor neuron signs difficult to elicit in amyotrophic lateral sclerosis? J. Neurol. Neurosurg. Psychiatry, 2012, vol. 83, pp. 659–662. https://doi.org/10.1136/jnnp-2012-302315

    Article  PubMed  Google Scholar 

  5. Huynh, W., Simon, N.G., Grosskreutz, J., et al., Assessment of the upper motor neuron in amyotrophic lateral sclerosis, Clin. Neurophysiol., 2016, vol. 127, pp. 2643–2660. https://doi.org/10.1016/j.clinph.2016.04.025

    Article  PubMed  Google Scholar 

  6. Ince, P.G., Evans, J., Knopp, M., et al., Corticospinal tract degeneration in the progressive muscular atrophy variant of ALS, Neurology, 2003, vol. 60, pp. 1252–1258.

    Article  CAS  Google Scholar 

  7. Liewluck, T. and Saperstein, D.S., Progressive muscular atrophy, Neurol. Clin., 2015, vol. 33, pp. 761–773. https://doi.org/10.1016/j.ncl.2015.07.005

    Article  PubMed  Google Scholar 

  8. Al-Chalabi, A., Hardiman, O., Kiernan, M.C., et al., Amyotrophic lateral sclerosis: moving towards a new classification system, Lancet Neurol., 2016, vol. 15, pp. 1182–1194. https://doi.org/10.1016/S1474-4422(16)30199-5

    Article  PubMed  Google Scholar 

  9. Swinnen, B. and Robberecht, W., The phenotypic variability of amyotrophic lateral sclerosis, Nat. Rev. Neurol., 2014, vol. 10, pp. 661–670. https://doi.org/10.1038/nrneurol.2014.184

    Article  PubMed  Google Scholar 

  10. Ludolph, A., Drory, V., Hardiman, O., et al., A revision of the El Escorial criteria 2015, Amyotrophic Lateral Scler. Frontotemporal Degener., 2015, vol. 16, pp. 291–292. https://doi.org/10.3109/21678421.2015.1049183

    Article  Google Scholar 

  11. Bakulin, I.S., Zakroishchikova, I.V., Suponeva, N.A., and Zakharova, M.N., Amyotrophic lateral sclerosis: clinical heterogeneity and approaches to classification, Nervno-Myshechnye Bolezni, 2017, vol. 7, no. 3, pp. 10–20. https://doi.org/10.17650/2222-8721-2017-7-3-10-20

    Article  Google Scholar 

  12. Garg, N., Park, S.B., Vucic, S., et al., Differentiating lower motor neuron syndromes, J. Neurol. Neurosurg. Psychiatry, 2017, vol. 88, pp. 474–483. https://doi.org/10.1136/jnnp-2016-313526

    Article  PubMed  Google Scholar 

  13. Sanderson, A.B., Arnold, W.D., Elsheikh, B., and Kissel, J.T., The clinical spectrum of isolated peripheral motor dysfunction, Muscle Nerve, 2015, vol. 51, pp. 358–362. https://doi.org/10.1002/mus.24326

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wijesekera, L.C., Mathers, S., Talman, P., et al., Natural history and clinical features of the flail arm and flail leg ALS variants, Neurology, 2009, vol. 72, pp. 1087–1094. https://doi.org/10.1212/01.wnl.0000345041.83406.a2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hübers, A., Hildebrandt, V., Petri, S., et al., Clinical features and differential diagnosis of flail arm syndrome, J. Neurol., 2016, vol. 263, pp. 390–395. https://doi.org/10.1007/s00415-015-7993-z

    Article  PubMed  Google Scholar 

  16. Visser, J., van den Berg-Vos, R.M., Franssen, H., et al., Mimic syndromes in sporadic cases of progressive spinal muscular atrophy, Neurology, 2002, vol. 58, pp. 1593–1596.

    Article  CAS  Google Scholar 

  17. Chiò, A., Pagani, M., Agosta, F., et al., Neuroimaging in amyotrophic lateral sclerosis: insights into structural and functional changes, Lancet Neurol., 2014, vol. 13, pp. 1228–1240. https://doi.org/10.1016/S1474-4422(14)70167-X

    Article  PubMed  Google Scholar 

  18. Pradat, P.F. and El Mendili, M.M., Neuroimaging to investigate multisystem involvement and provide biomarkers in amyotrophic lateral sclerosis, Biomed. Res. Int., 2014, vol. 2014, p. 467560. https://doi.org/10.1155/2014/467560

    Article  PubMed  PubMed Central  Google Scholar 

  19. Grolez, G., Moreau, C., Danel-Brunaud, V., et al., The value of magnetic resonance imaging as a biomarker for amyotrophic lateral sclerosis: a systematic review, BMC Neurol., 2016, vol. 16, p. 155. https://doi.org/10.1186/s12883-016-0672-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bakulin, I.S., Chervyakov, A.V., Kremneva, E.I., et al., Structural and functional neuroimaging in amyotrophic lateral sclerosis, Ann. Klin. Eksp. Nevrol., 2017, no. 10, pp. 72–82. https://doi.org/10.18454/ACEN.2017.2.11

  21. Rossini, P.M., Burke, D., Chen, R., et al., Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee, Clin. Neurophysiol., 2015; 126, pp. 1071–1107. https://doi.org/10.1016/j.clinph.2015.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Di Lazzaro, V. and Ziemann, U., The contribution of transcranial magnetic stimulation in the functional evaluation of microcircuits in human motor cortex, Front. Neural Circ., 2013, vol. 7, p. 18. https://doi.org/10.3389/fncir.2013.00018

    Article  Google Scholar 

  23. Vucic, S., Ziemann, U., Eisen, A., et al., Transcranial magnetic stimulation and amyotrophic lateral sclerosis: pathophysiological insights, J. Neurol. Neurosurg. Psychiatry, 2013, vol. 84, pp. 1161–1170. https://doi.org/10.1136/jnnp-2012-304019

    Article  PubMed  Google Scholar 

  24. Vucic, S. and Kiernan, M.C., Transcranial magnetic stimulation for the assessment of neurodegenerative disease, Neurotherapeutics, 2017, vol. 14, pp. 91–106. https://doi.org/10.1007/s13311-016-0487-6

    Article  CAS  PubMed  Google Scholar 

  25. Geevasinga, N., Menon, P., Özdinler, P.H., et al., Pathophysiological and diag nostic implications of cortical dysfunction in ALS, Nat. Rev. Neurol., 2016, vol. 12, pp. 651–661. https://doi.org/10.1038/nrneurol.2016.140

    Article  CAS  PubMed  Google Scholar 

  26. Bakulin, I.S., Chervyakov, A.V., Suponeva, N.A., et al., Motor cortex hyperexcitability, neuroplasticity and degeneration in amyotrophic lateral sclerosis, in Novel Aspects of Amyotrophic Lateral Sclerosis, Foyaca-Sibat, H., Ed., Rijeka: InTech, 2016, pp. 47–72.

    Google Scholar 

  27. Vucic, S., Cheah, B.C., and Kiernan, M.C., Defining the mechanisms that underlie cortical hyperexcitability in amyotrophic lateral sclerosis, Exp. Neurol., 2009, vol. 220, pp. 177–182. https://doi.org/10.1016/j.expneurol.2009.08.017

    Article  PubMed  Google Scholar 

  28. Bae, J.S., Simon, N.G., Menon, P., et al., The puzzling case of hyperexcitability in amyotrophic lateral sclerosis, J. Clin. Neurol., 2013, vol. 9, pp. 65–74. https://doi.org/10.3988/jcn.2013.9.2.65

    Article  PubMed  PubMed Central  Google Scholar 

  29. Do-Ha, D., Buskila, Y., and Ooi, L., Impairments in motor neurons, interneurons and astrocytes contribute to hyperexcitability in ALS: underlying mechanisms and paths to therapy, Mol. Neurobiol., 2018, vol. 55, pp. 1410–1418. https://doi.org/10.1007/s12035-017-0392-y

    Article  CAS  PubMed  Google Scholar 

  30. Turner, M.R. and Kiernan, M.C., Does interneuronal dysfunction contribute to neurodegeneration in amyotrophic lateral sclerosis? Amyotrophic Lateral Scler., 2012, vol. 13, pp. 245–250. https://doi.org/10.3109/17482968.2011.636050

    Article  Google Scholar 

  31. Clark, R., Blizzard, C., and Dickson, T., Inhibitory dysfunction in amyotrophic lateral sclerosis: future therapeutic opportunities, Neurodegener. Dis. Manage., 2015, vol. 5, pp. 511–525. https://doi.org/10.2217/nmt.15.49

    Article  Google Scholar 

  32. Menon, P., Kiernan, M.C., and Vucic, S., Cortical hyperexcitability precedes lower motor neuron dysfunction in ALS, Clin. Neurophysiol., 2015, vol. 126, pp. 803–809. https://doi.org/10.1016/j.clinph.2014.04.023

    Article  PubMed  Google Scholar 

  33. Vucic, S., Nicholson, G.A., and Kiernan, M.C., Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis, Brain, 2008, vol. 131, no. 6, pp. 1540–1550. https://doi.org/10.1093/brain/awn071

    Article  PubMed  Google Scholar 

  34. van Zundert, B., Izaurieta, P., Fritz, E., and Alvarez, F.J., Early pathogenesis in the adult-onset neurodegenerative disease amyotrophic lateral sclerosis, J. Cell Biochem., 2012, vol. 113, pp. 3301–3312. https://doi.org/10.1002/jcb.24234

    Article  CAS  PubMed  Google Scholar 

  35. Vucic, S., Cheah, B.C., Yiannikas, C., and Kiernan, M.C., Cortical excitability distinguishes ALS from mimic disorders, Clin. Neurophysiol., 2011, vol. 122, pp. 1860–1866. https://doi.org/10.1016/j.clinph.2010.12.062

    Article  PubMed  Google Scholar 

  36. Attarian, S., Azulay, J.P., Lardillier, D., et al., Transcranial magnetic stimulation in lower motor neuron diseases, Clin. Neurophysiol., 2005, vol. 116, pp. 35–42.

    Article  CAS  Google Scholar 

  37. Vucic, S. and Kiernan, M.C., Abnormalities in cortical and peripheral excitability in flail arm variant amyotrophic lateral sclerosis, J. Neurol. Neurosurg. Psychiatry, 2007, vol. 78, pp. 849–852.

    Article  Google Scholar 

  38. Menon, P., Geevasinga, N., Yiannikas, C., et al., Cortical contributions to the flail leg syndrome: pathophysiological insights, Amyotrophic Lateral Scler. Frontotemporal Degener., 2016, vol. 17, pp. 389–396. https://doi.org/10.3109/21678421.2016.1145232

    Article  Google Scholar 

  39. Geevasinga, N., Menon, P., Yiannikas, C., et al., Diagnostic utility of cortical excitability studies in amyotrophic lateral sclerosis, Eur. J. Neurol., 2014, vol. 21, pp. 1451–1457. https://doi.org/10.1111/ene.12422

    Article  CAS  PubMed  Google Scholar 

  40. Menon, P., Geevasinga, N., Yiannikas, C., et al., Sensitivity and specificity of threshold tracking transcranial magnetic stimulation for diagnosis of amyotrophic lateral sclerosis: a prospective study, Lancet Neurol., 2015, vol. 14, pp. 478–484. https://doi.org/10.1016/S1474-4422(15)00014-9

    Article  PubMed  Google Scholar 

  41. Poidasheva, A.G., Bakulin, I.S., Chernyavskii, A.Yu., et al., Motor cortex mapping with navigated transcranial magnetic stimulation and its clinical application, Med. Alfavit, 2017, no. 2, pp. 21–25.

  42. de Carvalho, M., Miranda, P.C., Luís, M.L., and Ducla-Soares, E., Cortical muscle representation in amyotrophic lateral sclerosis patients: changes with disease evolution, Muscle Nerve, 1999, vol. 22, no. 12, pp. 1684–1692.

    Article  CAS  Google Scholar 

  43. Chervyakov, A.V., Bakulin, I.S., Savitskaya, N.G., et al., Navigated transcranial magnetic stimulation in amyotrophic lateral sclerosis, Muscle Nerve, 2015, vol. 51, pp. 125–131. https://doi.org/10.1002/mus.24345

    Article  PubMed  Google Scholar 

  44. Menon, P., Kiernan, M.C., and Vucic, S., Cortical dysfunction underlies the development of the split-hand in amyotrophic lateral sclerosis, PLoS One, 2014, vol. 9, p. e87124. https://doi.org/10.1371/journal.pone.0087124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Devine, M.S., Pannek, K., Coulthard, A., et al., Exposing asymmetric gray matter vulnerability in amyotrophic lateral sclerosis, Neuroimage Clin., 2015, vol. 7, pp. 782–787. https://doi.org/10.1016/j.nicl.2015.03.006

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ravits, J., Paul, P., and Jorg, C., Focality of upper and lower motor neuron degeneration at the clinical onset of ALS, Neurology, 2007, vol. 68, pp. 1571–1575.

    Article  Google Scholar 

  47. Menon, P., Geevasinga, N., van den Bos, M., et al., Cortical hyperexcitability and disease spread in amyotrophic lateral sclerosis, Eur. J. Neurol., 2017, vol. 24, pp. 816–824. https://doi.org/10.1111/ene.13295

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Bakulin.

Ethics declarations

Conflict of interests. The authors declare there is no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakulin, I.S., Poydasheva, A.G., Chernyavsky, A.Y. et al. Methods of Detecting Lesions of Upper Motor Neuron in Amyotrophic Lateral Sclerosis using Transcranial Magnetic Stimulation. Hum Physiol 45, 842–850 (2019). https://doi.org/10.1134/S0362119719080036

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119719080036

Keywords:

Navigation