Skip to main content
Log in

XeI barrier discharge excilamp

  • Spectroscopy of Atoms and Molecules
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Barrier discharges in Xe-I2 (100-0.04 Torr) mixtures are studied experimentally and theoretically. It is shown that the experimental efficiency and the intensity of radiation in the BX band of XeI* (253 nm) may reach 5.5% and 9 mW/cm2, respectively. The simulation results show that the main energy loss channel is heating of ions. The radiation yield can be increased by shortening the applied voltage pulse duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Carman, B. K. Ward, R. P. Mildren, and D. M. Kane, in Proceedings of the 11th International Symposium on Science and Technology of Light Sources, Ed. by M. Q. Liu and R. Devonshire (Shanghai, 2007), p. 271.

  2. M. I. Lomaev, V. S. Skakun, E. A. Sosnin, V. F. Tarasenko, and D. V. Shitts, Pis’ma Zh. Tekh. Fiz. 25(21), 27 (1999).

    Google Scholar 

  3. D. Schroder, J. N. Harvey, M. Aschi, and H. Schwarz, J. Chem. Phys. 108(20), 8446 (1998).

    Article  ADS  Google Scholar 

  4. J. W. Frame, P. C. John, T. A. DeTemple, and J. G. Eden, Appl. Phys. Lett. 72(21), 2634 (1998).

    Article  ADS  Google Scholar 

  5. V. F. Tarasenko, E. B. Chernov, M. V. Erofeev, M.I. Lomaev, A. N. Panchenko, V. S. Skakun, E. A. Sosnin, and D. V. Shinz, Appl. Phys. A 69, 327 (1999).

    Article  ADS  Google Scholar 

  6. P. N. Barnes, J. Appl. Phys. 80(15), 5593 (1996).

    Article  ADS  Google Scholar 

  7. J-Y. Zang and I. W. Boyd, J. Appl. Phys. 84(3), 1174 (1998).

    Article  ADS  Google Scholar 

  8. M. M. Guivan and A. N. Malinin, Czechoslovak J. Phys. B 56(15), 659 (2006).

    Article  Google Scholar 

  9. Ou Qiong-Rong, Meng Yue-Dong, Xu X., Shu Xing-Sheng, and Ren Zhao-Xing, Chin. Phys. Lett. 21(7), 1317 (2004).

    Article  ADS  Google Scholar 

  10. Zhang Lian-Shui, Zhao Xiao-Hui, and Han Li, Chin. Phys. 11(6), 586 (2002).

    Google Scholar 

  11. G. A. Volkova and G. N. Zvereva, Opt. Spektrosk. 96(3), 419 (2004).

    Article  Google Scholar 

  12. A. K. Shuaibov and I. A. Grabovaya, Zh. Prikl. Spektrosk. 72(2), 247 (2005).

    Google Scholar 

  13. M. I. Lomaev, V. S. Skakun, E. A. Sosnin, V. F. Tarasenko, and D. V. Shitts, Pis’ma Zh. Tekh. Fiz. 25, 27 (1999).

    Google Scholar 

  14. A. M. Boichenko and S. I. Yakovlenko, Laser Phys. 13(12), 1461 (2003).

    Google Scholar 

  15. M. M. Guivan, T. Kamikozawa, H. Kurokawa, H. Motomura, and K. Kadowaki, IEEE Trans. Plasma Sci. 38(8), 1972 (2010).

    Article  ADS  Google Scholar 

  16. A. Voronov, S. Reber, and F. J. Schilling, in Proceedings of the International Conference on Gas Discharges and Their Applications (China, 2006), p. 601.

    Google Scholar 

  17. M. M. Guivan, P. St’ahel, A. Brablec, J. Janca, H. Motomura, and M. Jinno, in Proceedings of the 11th International Symposium on Science and Technology of Light Sources, Ed. by M. Q. Liu and R. Devonshire (Shanghai, 2007), p. 547.

  18. G. P. Baxter and M. R. Grose, J. Am. Chem. Soc. 29(2), 127 (1907).

    Article  Google Scholar 

  19. G. P. Baxter and M. R. Grose, J. Am. Chem. Soc. 37(5), 1061 (1915).

    Article  Google Scholar 

  20. A. Saiz-Lopez, R. W. Saunders, D. M. Joseph, S. H. Ashworth, and J. M. C. Plane, Atm. Chem. Phys., No. 4, 1443 (2004).

    Google Scholar 

  21. P. N. Barnes and M. J. Kushner, J. Appl. Phys. 84(9), 4727 (1998).

    Article  ADS  Google Scholar 

  22. M. M. Guivan, T. Kamikozawa, H. Kurokawa, H. Motomura, K. Kadowaki, and M. Jinno, IEEE Trans. Plasma Sci. 38(8), 1972 (2010).

    Article  ADS  Google Scholar 

  23. A. K. Shuaibov and I. A. Grabovaya, J. Opt. Technol. 72(7), 544 (2005).

    Article  ADS  Google Scholar 

  24. M. I. Lomaev and V. F. Tarasenko, Proc. SPIE-Int. Soc. Opt. Eng. 4747, 390 (2002).

    Article  ADS  Google Scholar 

  25. M. I. Lomaev, V. S. Skakun, E. A. Sosnin, V. F. Tarasenko, D. V. Shitts, and M. V. Erofeev, Usp. Fiz. Nauk 173(2), 201 (2003).

    Article  Google Scholar 

  26. S. M. Avdeev, G. N. Zvereva, and E. A. Sosnin, Opt. Spektrosk. 105(6), 946 (2007).

    Google Scholar 

  27. V. V. Datsyuk, I. A. Izmailov, and V. A. Kochelap, Usp. Fiz. Nauk 168(4), 439 (1998).

    Article  Google Scholar 

  28. T. D. Dreiling and D. W. Setser, J. Chem. Phys. 75(9), 4360 (1981).

    Article  ADS  Google Scholar 

  29. L. A. Gundel, D. W. Setser, M. A. A. Clyne, J. A. Coxon, and W. Nip, J. Chem. Phys. 64(11), 4390 (1976).

    Article  ADS  Google Scholar 

  30. M. T. Jones, T. D. Dreiling, D. W. Setser, and R. N. McDonald, The J. Phys. Chem. 89(21), 4501 (1985).

    Article  Google Scholar 

  31. M. Tsuji, M. Furusawa, H. Kouno, and Y. Nishimura, J. Chem. Phys. 94(6), 4291 (1991).

    Article  ADS  Google Scholar 

  32. M. Tsuji, M. Ide, E. Oda, and Y. Nishimura, J. Chem. Phys. 109(9), 3374 (1998).

    Article  ADS  Google Scholar 

  33. I. I. Eving and C. A. Brau, Phys. Rev. A 12(1), 129 (1975).

    Article  ADS  Google Scholar 

  34. P. J. Hay and W. R. Wadt, Ann. Rev. Phys. Chem. 30, 311 (1979).

    Article  ADS  Google Scholar 

  35. A. M. Boichenko, M. I. Lomaev, A. N. Panchenko, E. A. Sosnin, and V. F. Tarasenko, Ultraviolet and Vacuum Ultraviolet Excilamps: Physics, Technology, Applications (STT, Tomsk, 2011) [in Russian].

    Google Scholar 

  36. S. D. Rockwood, Phys. Rev. A 8(5), 2348 (1973).

    Article  ADS  Google Scholar 

  37. A. M. Boichenko, V. I. Derzhiev, A. G. Zhidkov, A. V. Karelin, A. V. Koval’, O. V. Sereda, and S. I. Yakovlenko, Tpudy IOFAN 21, 44 (1989).

    Google Scholar 

  38. A. V. Loginov and P. F. Gruzdev, Opt. Spektrosk. 53 (1982).

  39. Excimer Lasers, Ed. by Ch. M. Rhodes (Springer, Heidelberg, 1979; Mir, Moscow, 1981).

    Google Scholar 

  40. A. M. Boichenko and S. I. Yakovlenko, Laser Phys. 13(12), 1461 (2003).

    Google Scholar 

  41. J. K. K. Ip and G. Rurns, J. Chem. Phys. 56(6), 3155 (1972).

    Article  ADS  Google Scholar 

  42. A. K. Hays, J. M. Hoffman, and G. C. Tisone, Chem. Phys. Lett. 39(2), 353 (1976).

    Article  ADS  Google Scholar 

  43. R. J. Carman and R. P. Mildren, J. Phys. D: Appl. Phys. 36, 19 (2003).

    Article  ADS  Google Scholar 

  44. T. H. Johnson and A. M. Hunter, J. Appl. Phys. 51(5), 2406 (1980).

    Article  ADS  Google Scholar 

  45. R. J. Carman, R. P. Mildren, M. J. Withford, D. J. W. Brown, and J. A. Piper, IEEE J. Quant. Electron. QE-36, 438 (2000).

    Article  ADS  Google Scholar 

  46. S. Patankar, Numerical Heat Transfer and Fluid Flow (McGraw-Hill, New York, 1980; Energoatomizdat, Moscow, 1984).

    MATH  Google Scholar 

  47. S. V. Avtaeva and E. B. Kulumbaev, Plasma Phys. Rev. 34(6), 452.

  48. J. E. Velazco, J. Chem. Phys. 65, 3468 (1976).

    Article  ADS  Google Scholar 

  49. H. Hemmati and G. J. Collins, J. Appl. Phys. 51, 2961 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.M. Avdeev, G.N. Zvereva, E.A. Sosnin, V.F. Tarasenko, 2013, published in Optika i Spektroskopiya, 2013, Vol. 115, No. 1, pp. 33–42.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avdeev, S.M., Zvereva, G.N., Sosnin, E.A. et al. XeI barrier discharge excilamp. Opt. Spectrosc. 115, 28–36 (2013). https://doi.org/10.1134/S0030400X13070035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X13070035

Keywords

Navigation