Skip to main content
Log in

Interplay Between Electron Correlations, Magnetic State, and Structural Confinement in LaNiO3 Ultrathin Films

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

We report a theoretical study of the effects of electron correlations and structural confinement on the electronic properties and magnetic state of LaNiO3 (LNO) thin films epitaxially deposited on the \((001)\) LaAlO3 (LAO) substrate. Using the DFT + U method we compute the electronic band structure, magnetic properties, and phase stability of the 1.5 unit-cell-thick NiO2-terminated LNO thin films. Our results reveal complex diversity of the electronic states caused by the effects of structural confinement, interfacial charge transfer and electronic correlations. Our calculations suggest the appearance of in-plane (110) charge disproportionation of the Ni ions in the interface NiO2 layer of the antiferromagnetically ordered LNO thin films. Moreover, the electronic states of both the antiferromagnetic and ferromagnetic LNO/LAO show a large orbital polarization of the Ni ions in the surface NiO2 layers. Our results suggest the crucial importance of oxygen defects to explain the metal-to-insulator phase transition experimentally observed in a few-unit-cell-thick LNO/LAO thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).

    Article  CAS  ADS  Google Scholar 

  2. D. Khomskii, Transition Metal Compounds (Cambridge Univ. Press, Cambridge, 2014).

    Book  Google Scholar 

  3. G. Catalan, Phase Trans. 81, 729 (2008).

    Article  CAS  Google Scholar 

  4. J. B. Torrance, P. Lacorre, A. I. Nazzal, E. J. Ansaldo, and Ch. Niedermayer, Phys. Rev. B 45, 8209 (1992).

    Article  CAS  ADS  Google Scholar 

  5. J. L. García-Muñoz, J. Rodríguez-Carvajal, P. Lacorre, and J. B. Torrance, Phys. Rev. B 46, 4414 (1992).

    Article  ADS  Google Scholar 

  6. A. V. Boris, Y. Matiks, E. Benckiser, et al., Science (Washington, DC, U. S.) 332, 937 (2011).

    Article  CAS  ADS  Google Scholar 

  7. H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nat. Mater. 11, 103 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. S. Middey, J. Chakhalian, P. Mahadevan, J. W. Freeland, A. J. Millis, and D. D. Sarma, Ann. Rev. Mater. Res. 46, 305 (2016).

    Article  CAS  ADS  Google Scholar 

  9. P. D. C. King, H. I. Wei, Y. F. Nie, M. Uchida, C. Adamo, S. Zhu, X. He, I. Božovic, D. G. Schlom, and K. M. Shen, Nat. Nanotechnol. 9, 443 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. H. Chen and A. Millis, J. Phys.: Condens. Matter 29, 243001 (2017).

  11. S. Catalano, M. Gibert, J. Fowlie, J. Íñiguez, J.-M. Triscone, and J. Kreisel, Rep. Prog. Phys. 81, 046501 (2018).

  12. M. Golalikhani, Q. Lei, R. U. Chandrasena, et al., Nat. Commun. 9, 2206 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. R. Scherwitzl, S. Gariglio, M. Gabay, P. Zubko, M. Gibert, and J. M. Triscone, Phys. Rev. Lett. 106, 246403 (2011).

  14. E. J. Moon, B. A. Gray, M. Kareev, et al., New J. Phys. 13, 073037 (2011).

  15. M. Wu, E. Benckiser, M. W. Haverkort, et al., Phys. Rev. B 88, 125124 (2013).

  16. J. Fowlie, M. Gibert, G. Tieri, A. Gloter, J. Íñiguez, A. Filippetti, S. Catalano, S. Gariglio, A. Schober, M. Guennou, J. Kreisel, O. Stéphan, and J. Triscone, Adv. Mater. 29, 1605197 (2017).

  17. M. Hepting, R. J. Green, Z. Zhong, et al., Nat. Phys. 14, 1097 (2018).

    Article  CAS  Google Scholar 

  18. I. Ardizzone, M. Zingl, J. Teyssier, H. U. R. Strand, O. Peil, J. Fowlie, A. B. Georgescu, S. Catalano, N. Bachar, A. B. Kuzmenko, M. Gibert, J.-M. Triscone, A. Georges, and D. van der Marel, Phys. Rev. B 102, 155148 (2020).

  19. Q. Guo, S. Farokhipoor, C. Magén, F. Rivadulla, and B. Noheda, Nat. Commun. 11, 2949 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. P. Hansmann, X. Yang, A. Toschi, G. Khaliullin, O. K. Andersen, and K. Held, Phys. Rev. Lett. 103, 016401 (2009).

  21. A. Blanca-Romero and R. Pentcheva, Phys. Rev. B 84, 195450 (2011).

  22. D. Doennig, W. E. Pickett, and R. Pentcheva, Phys. Rev. B 89, 121110(R) (2014).

  23. S. Middey, D. Meyers, D. Doennig, M. Kareev, X. Liu, Y. Cao, Zh. Yang, J. Shi, L. Gu, P. J. Ryan, R. Pentcheva, J. W. Freeland, and J. Chakhalian, Phys. Rev. Lett. 116, 056801 (2016).

  24. B. Geisler, A. Blanca-Romero, and R. Pentcheva, Phys. Rev. B 95, 125301 (2017).

  25. B. Geisler and R. Pentcheva, Phys. Rev. Mater. 2, 055403 (2018).

  26. B. Geisler and R. Pentcheva, Phys. Rev. B 102, 020502(R) (2020).

  27. B. Geisler, S. Follmann, and R. Pentcheva, Phys. Rev. B 106, 155139 (2022).

  28. B. Lau and A. J. Millis, Phys. Rev. Lett. 110, 126404 (2013).

  29. H. Lau, A. J. Millis, and C. A. Marianetti, Phys. Rev. B 93, 235109 (2016).

  30. X. Liao and H. Park, Phys. Rev. Mater. 7, 015002 (2023).

  31. O. E. Lau, M. Ferrero, and A. Georges, Phys. Rev. B 90, 045128 (2014).

  32. A. B. Georgescu, O. E. Peil, A. S. Disa, A. Georges, and A. J. Millis, Proc. Natl. Acad. Sci. U. S. A. 116, 14434 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. J. Ruppen, J. Teyssier, O. E. Peil, S. Catalano, M. Gibert, J. Mravlje, J.-M. Triscone, A. Georges, and D. van der Marel, Phys. Rev. B 92, 155145 (2015).

  34. V. Bisogni, S. Catalano, R. J. Green, M. Gibert, R. Scherwitzl, Y. Huang, V. N. Strocov, P. Zubko, S. Balandeh, J.-M. Triscone, G. Sawatzky, and T. Schmitt, Nat. Commun. 7, 13017 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. H. Guo, Z. W. Li, L. Zhao, Z. Hu, C. F. Chang, C.‑Y. Kuo, W. Schmidt, A. Piovano, T. W. Pi, O. Sobolev, D. I. Khomskii, L. H. Tjeng, and A. C. Komarek, Nat. Commun. 9, 43 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. H. Park, A. J. Millis, and C. A. Marianetti, Phys. Rev. Lett. 109, 156402 (2012).

  37. A. Subedi, O. E. Peil, and A. Georges, Phys. Rev. B 91, 075128 (2015).

  38. P. Seth, O. E. Peil, L. Pourovskii, M. Betzinger, C. Friedrich, O. Parcollet, S. Biermann, F. Aryasetiawan, and A. Georges, Phys. Rev. B 96, 205139 (2017).

  39. A. Hampel and C. Ederer, Phys. Rev. B 96, 165130 (2017).

  40. O. E. Peil, A. Hampel, C. Ederer, and A. Georges, Phys. Rev. B 99, 245127 (2019).

  41. A. Hampel, P. Liu, C. Franchini, and C. Ederer, npj Quantum Mater. 4, 5 (2019)

  42. K. Haule and G. L. Pascut, Sci. Rep. 7, 10375 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  43. X. Liau, V. Singh, and H. Park, Phys. Rev. B 103, 085110 (2021).

  44. I. I. Mazin, D. I. Khomskii, R. Lengsdorf, J. A. Alonso, W. G. Marshall, R. M. Ibberson, A. Podlesnyak, M. J. Martíñez-Lope, and M. M. Abd-Elmeguid, Phys. Rev. Lett. 98, 176406 (2007).

  45. S. Johnston, A. Mukherjee, I. Elfimov, M. Berciu, and G. A. Sawatzky, Phys. Rev. Lett. 112, 106404 (2014).

  46. M. Azuma, S. Carlsson, J. Rodgers, M. G. Tucker, M. Tsujimoto, S. Ishiwata, S. Isoda, Y. Shimakawa, M. Takano, and J. P. Attfield, J. Am. Chem. Soc. 129, 14433 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. I. Leonov, A. S. Belozerov, and S. L. Skornyakov, Phys. Rev. B 100, 161112(R) (2019).

  48. D. Li, K. Lee, B. Y. Wang, M. Osada, S. Crossley, H. R. Lee, Y. Cui, Y. Hikita, and H. Y. Hwang, Nature (London, U. K.) 572, 624 (2019).

    Article  CAS  ADS  Google Scholar 

  49. M. Rossi, M. Osada, J. Choi, et al., Nat. Phys. 18, 869 (2022).

    Article  CAS  Google Scholar 

  50. C. C. Tam, J. Choi, X. Ding, S. Agrestini, A. Nag, M. Wu, B. Huang, H. Luo, P. Gao, M. García-Fernández, L. Qiao, and K.-J. Zhou, Nat. Mater. 21, 1116 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  51. G. Krieger, L. Martinelli, S. Zeng, L. E. Chow, K. Kummer, R. Arpaia, M. Moretti Sala, N. B. Brookes, A. Ariando, N. Viart, M. Salluzzo, G. Ghiringhelli, and D. Preziosi, Phys. Rev. Lett. 129, 027002 (2022).

  52. I. Leonov, S. L. Skornyakov, and S. Y. Savrasov, Phys. Rev. B 101, 241108(R) (2020).

  53. F. Lechermann, Phys. Rev. X 10, 041002 (2020).

  54. J. Karp, A. S. Botana, M. R. Norman, H. Park, M. Zingl, and A. Millis, Phys. Rev. X 10, 021061 (2020).

  55. J. Karp, A. Hampel, Ma. Zingl, A. S. Botana, H. Park, M. R. Norman, and A. J. Millis, Phys. Rev. B 102, 245130 (2020).

  56. I. Leonov, J. Alloys Compd. 883, 160888 (2021).

  57. A. S. Botana, F. Bernardini, and A. Cano, J. Exp. Theor. Phys. 159, 711 (2021).

    Google Scholar 

  58. K. G. Slobodchikov and I. V. Leonov, Phys. Rev. B 106, 165110 (2022).

  59. A. Kreisel, B. M. Andersen, A. T. Rømer, I. M. Eremin, and F. Lechermann, Phys. Rev. Lett. 129, 077002 (2022).

  60. M. A. Vysotin, I. A. Tarasov, A. S. Fedorov, S. N. Varnakov, and S. G. Ovchinnikov, JETP Lett. 116, 323 (2022).

    Article  CAS  ADS  Google Scholar 

  61. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).

    Article  CAS  ADS  Google Scholar 

  62. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).

    Article  CAS  ADS  Google Scholar 

  63. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  PubMed  ADS  Google Scholar 

  64. S. Baroni, S. de Gironcoli, A. dal Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).

    Article  CAS  ADS  Google Scholar 

  65. P. Giannozzi, S. Baroni, N. Bonini, et al., J. Phys.: Condens. Matter 21, 395502 (2009).

  66. L. Bengtsson, Phys. Rev. B 59, 12301 (1999).

    Article  CAS  ADS  Google Scholar 

  67. J. P. Attfield, Solid State Sci. 8 861 (2006).

    Article  CAS  ADS  Google Scholar 

  68. G. M. Dalpian, Q. Liu, J. Varignon, M. Bibes, and A. Zunger, Phys. Rev. B 98, 075135 (2018).

  69. N. B. Ivanova, S. G. Ovchinnikov, M. M. Korshunov, I. M. Eremin, and N. V. Kazak, Phys. Usp. 52, 789 (2009).

    Article  CAS  ADS  Google Scholar 

  70. E. Greenberg, I. Leonov, S. Layek, Z. Konopkova, M. P. Pasternak, L. Dubrovinsky, R. Jeanloz, I. A. Abrikosov, and G. Kh. Rozenberg, Phys. Rev. X 8, 031059 (2018).

  71. S. Layek, E. Greenberg, S. Chariton, M. Bykov, E. Bykova, D. M. Trots, A. V. Kurnosov, I. Chuvashova, S. V. Ovsyannikov, I. Leonov, and G. Kh. Rozenberg, J. Am. Chem. Soc. 144, 10259 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 22-22-00926, https://rscf.ru/project/22-22-00926).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. O. Vambold.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vambold, N.O., Sazhaev, G.A. & Leonov, I.V. Interplay Between Electron Correlations, Magnetic State, and Structural Confinement in LaNiO3 Ultrathin Films. Jetp Lett. 118, 886–892 (2023). https://doi.org/10.1134/S0021364023603287

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364023603287

Navigation