Skip to main content
Log in

Dynamics of Interplanetary Parameters and Geomagnetic Indices during Magnetic Storms Induced by Different Types of Solar Wind

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Based on the OMNI2 archival data for 1995–2017, the dynamics of geomagnetic activity indices (Dst, ap, AE, and PC) and interplanetary parameters over the periods of magnetic storms with a minimum of Dstmin ≤ –50 nT induced by different interplanetary sources is analyzed: CIR regions of the interaction of solar wind (SW) streams with different speeds; Sheath-compression regions before interplanetary CMEs (ICMEs); magnetic clouds (MCs) and Ejectas. 181 storms with a monotonic course of the Dst index during the main phases were selected. Similarly to earlier works (Yermolaev et al., 2010a, 2011), which analyzed the OMNI data for 1976–2000, double superposed epoch analysis method with two reference times was used: at the beginning of the main phase and at the minimum Dstmin. This approach allows one to reveal trends in the dynamics of the magnetic activity indices and the SW parameters during storms with different durations of main phases, as well as the difference between these trends for the storms generated by different sources. It is shown that the largest average Dst, , AE, and PC indices take place during Sheath storms, and the smallest are registered during the Ejecta storms. The dynamics of the AE and ap indices is similar, and the polar cap index PC dynamics considerably varies during storms with different interplanetary sources, which is evidence of differences between the responses of the polar magnetosphere during storms generated by different sources. There are significant differences between the variations of SW parameters of different storm groups: a very high level of fluctuations of the B and Bz of the IMF is characteristic of the Sheath storms, while, it is close to average for the CIR storms and is considerably lower than average for MCs and Ejecta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Akasofu, S.-I., The development of magnetic storms without a preceding enhancement of the solar plasma pressure, Planet. Space Sci., 1965, vol. 13, pp. 297–301.

    Article  Google Scholar 

  2. Akasofu, S.-I., Solar-wind disturbances and the solar wind–magnetosphere energy coupling function, Sol. Space Sci. Rev., 1983, vol. 34, pp. 173–183.

    Google Scholar 

  3. Borovsky, J.E. and Denton, M.H., Differences between CME-driven storms and CIR-driven storms, J. Geophys. Res., 2006, vol. 28, pp. 121–190.

    Google Scholar 

  4. Boroyev, R.N., Relationship between substorm activity and the interplanetary medium parameters during the main phase of strong magnetic field, Adv. Space Res., 2019, vol. 63, pp. 300–308.

    Article  Google Scholar 

  5. Burlaga, L.F., Sittler, E., Mariani, F., and Schwenn, R., Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations, J. Geophys. Res., 1981, vol. 86, pp. 6673–6684.

    Article  Google Scholar 

  6. Burton, R.K., McPherron, R.L., and Russell, C.T., An empirical relationship between interplanetary conditions and Dst,J. Geophys. Res., 1975, vol. 80, pp. 4204–4214.

    Article  Google Scholar 

  7. Dessler, A.J. and Parker, E.N., Hydromagnetic theory of geomagnetic storms, J. Geophys. Res., 1959, vol. 64, pp. 2239–2252.

    Article  Google Scholar 

  8. Dremukhina, L.A., Lodkina, I.G., Yermolaev, Yu.I., Statistical study of the effect of different solar wind types on magnetic storm generation during 1995–2016, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 6, pp. 737–743. https://doi.org/10.1134/S0016794018060032

  9. Dungey, J.W., Interplanetary magnetic field and the auroral zone, Phys. Rev. Lett., 1961, no. 6, pp. 47–48.

  10. Gonzalez, W.D. and Echer, E., A study on the peak Dst and peak negative Bz relationship during intense geomagnetic storms, Geophys. Res. Lett., 1994, vol. 32, L18103. https://doi.org/10.1029/2005GL023486

    Article  Google Scholar 

  11. Gonzalez, W.D., Jozelyn, J.A., Kamide, Y., et al., What is a geomagnetic storm?, J. Geophys. Res., 1994, vol. 899, no. A4, pp. 5771–5777.

    Article  Google Scholar 

  12. Ilie, R., Liemohn, M.W., Thomsen, M.F., et al., Influence of epoch time selection on results of superposed epoch analysis using ACE and MPA data, J. Geophys. Res., 2008, vol. 113, A00A14. https://doi.org/10.1029/200813241

    Article  Google Scholar 

  13. King, J.H. and Papitashvili, N.E., Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data, J. Geophys. Res., 2004, vol. 110, no. A2, A02209. https://doi.org/10.1029/2004JA010804

    Article  Google Scholar 

  14. Loewe, C.A. and Prölls, G.V., Classification and mean behavior of magnetic storms, J. Geophys. Res., 1997, vol. 102, 14209.

    Article  Google Scholar 

  15. Longden, N., Denton, M.H., and Honary, F., Particle precipitation during ICME-driven and CIR-driven geomagnetic storms, J. Geophys. Res., 2008, vol. 113, A06205. https://doi.org/10.1029/2007JA012752

    Article  Google Scholar 

  16. Nikolaeva, N.S., Yermolaev, Yu.I., and Lodkina, I.G., Dependence of geomagnetic activity during magnetic storms on the solar wind parameters for different types of streams: 2. Main phase of storm, Geomagn. Aeron. (Engl. Transl.), 2012a, vol. 52, no. 1, pp. 28–36.https://doi.org/10.1134/S0016793212010082

  17. Nikolaeva, N.S., Yermolaev, Yu.I., and Lodkina, I.G., Dependence of geomagnetic activity during magnetic storms on the solar wind parameters for different types of streams: 3. Development of storm, Geomagn. Aeron. (Engl. Transl.), 2012b, vol. 52, no. 1, pp. 37–48.https://doi.org/10.1134/S0016793212010094

  18. Nikolaeva, N.S., Yermolaev, Yu.I., Lodkina, I.G., and Yermolaev, M.Yu., Does magnetic storm generation depend on the solar wind type? Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 5, pp. 512–518.https://doi.org/10.1134/S0016793217050152

  19. Perreault, P. and Akasofu, S.-I., A study of geomagnetic storms, Geophys. J. R. Astron. Soc., 1978, vol. 54, pp. 547–573. https://doi.org/10.1111/j.1365-246X.1978.tb05494.x

    Article  Google Scholar 

  20. Pulkkinen, T.I., Partamies, N., Huttunen, K.E.J., Reeves, G.D., and Koskinen, H.E.J., Differences in geomagnetic storms driven by magnetic clouds and ICME sheath regions, Geophys. Res. Lett., 2007, vol. 34, L02105. https://doi.org/10.1029/2006GL027775

    Article  Google Scholar 

  21. Russell, C.T. and Milligan, T., The true dimensions of interplanetary coronal mass ejections, Adv. Space Res., 2002, vol. 29, pp. 301–306.

    Article  Google Scholar 

  22. Russell, C.T., McPherron, R.L., and Burton, R.K., On the cause of magnetic storms, J. Geophys. Res., 1974, vol. 79, pp. 1105–1109.

    Article  Google Scholar 

  23. Sckopke, N.A., A general relation between the energy of trapped particles and the distribution field near the Earth, J. Geophys. Res., 1966, vol. 71, pp. 3125–3130.

    Article  Google Scholar 

  24. Taylor, J.R., Lester, M., and Yeoman, T.K., A superposed epoch analysis of geomagnetic storms, Ann. Geophys., 1994, vol. 12, pp. 612–624.

    Article  Google Scholar 

  25. Troshichev, O.A. and Sormakov, D.A., PC index as a proxy of the solar wind energy that entered into the magnetosphere: 3. Development of magnetic storms, J. Atmos. Solar-Terr. Phys., 2017, vol. 180, pp. 60–77. https://doi.org/10.1016/j.jastp.2017.10.012

    Article  Google Scholar 

  26. Troshichev, O.A., Andrezen, V.G., Vennerstrom, S., and Friis-Christensen, E., Magnetic activity in the polar cap—A new index, Planet. Space Sci., 1988, vol. 36, pp. 1095–1102.

    Article  Google Scholar 

  27. Turner, N.E., Cramer, W.D., Earles, S.K., and Emery, B.A., Geoefficiency and energy partitioning in CIR-driven and CME-driven storms, J. Atmos. Sol.-Terr. Phys., 2009, vol. 71, pp. 1023–1031.

    Article  Google Scholar 

  28. Vichare, G., Alex, S., and Lakhina, G.S., Some characteristics of intense geomagnetic storms and their energy budget, J. Geophys. Res., 2005, vol. 110, A03204. https://doi.org/10.1029/2004JA010418

    Article  Google Scholar 

  29. Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., and Yermolaev, M.Yu., Catalog of large-scale solar wind phenomena during 1976–2000, Cosmic Res., 2009, vol. 47, no. 2, pp. 81–94.https://doi.org/10.1134/S0010952509020014

    Article  Google Scholar 

  30. Yermolaev, Yu.I., Lodkina, I.G., Nikolaeva, N.S., and Yermolaev, M.Yu., Statistical study of interplanetary condition effect on geomagnetic storms, Cosmic Res., 2010a, vol. 48, no. 6, pp. 485–500.https://doi.org/10.1134/S0010952510060018

    Article  Google Scholar 

  31. Yermolaev, Y.I., Nikolaeva, N.S., Lodkina, I.G., and Yermolaev, M.Y., Specific interplanetary conditions for CIR-, Sheath-, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis, Ann. Geophys., 2010b, vol. 28, pp. 2177–2186.https://doi.org/10.5194/angeo-28-2177-2010

    Article  Google Scholar 

  32. Yermolaev, Yu.I., Lodkina, I.G., Nikolaeva, N.S., and Yermolaev, M.Yu., Statistical study of interplanetary condition effect on geomagnetic storms. 2. Variations of parameters, Cosmic Res., 2011, vol. 49, no. 1, pp. 21–34.https://doi.org/10.1134/S0010952511010035

    Article  Google Scholar 

  33. Yermolaev, Y.I., Lodkina, I.G., Nikolaeva, N.S., and Yermolaev, M.Y., Influence of the interplanetary driver type on the durations of the main and recovery phases of magnetic storms, J. Geophys. Res., 2014, vol. 119, no. 10, pp. 8126–8136. https://doi.org/10.1002/2014JA019826

    Article  Google Scholar 

  34. Yermolaev, Y.I., Lodkina, I.G., Nikolaeva, N.S., and Yermolaev, M.Y., Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis, J. Geophys. Res., 2015, vol. 120. https://doi.org/10.1002/2015JA021274

  35. Yermolaev, Yu.I., Lodkina, I.G., Nikolaeva, N.S., Yermolaev, M.Yu., and Ryazantseva, M.O., Some problems of identifying types of large-scale solar wind and their role in the physics of the magnetosphere, Cosmic Res., 2017a, vol. 55, no. 3, pp. 178–189. https://doi.org/10.7868/S0023420617030025

    Article  Google Scholar 

  36. Yermolaev, Y.I., Lodkina, I.G., Nikolaeva, N.S., et al., Dynamics of large-scale solar-wind streams obtained by the double superposed epoch analysis: 2. Comparisons of CIRs vs. Sheaths and MCs vs. Ejecta, Sol. Phys., 2017b, vol. 292, no. 12, id 193.https://doi.org/10.1007/s11207-017-1205-1

  37. Yokoyama, N. and Kamide, Y., Statistical nature of geomagnetic storms, J. Geophys. Res., 1997, vol. 102, no. A7, pp. 14215–14222.

    Article  Google Scholar 

  38. Zhang, J., Liemohn, M.W., Kozira, J.U., Thomsen, M.F., Elliott, H.A., and Weygand, J.M., A statistic comparison of solar wind sources of moderate and intense geomagnetic storms at solar minimum and maximum, J. Geophys. Res., 2006, vol. 111, A01104. https://doi.org/10.1029/2005JA011065

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful for the provided opportunity to use the OMNI2 database (http://omniweb.gsfc.nasa.gov).

Funding

The paper was supported by the Russian Foundation for Basic Research, project no. 19-02-00177a.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. A. Dremukhina or Yu. I. Yermolaev.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dremukhina, L.A., Yermolaev, Y.I. & Lodkina, I.G. Dynamics of Interplanetary Parameters and Geomagnetic Indices during Magnetic Storms Induced by Different Types of Solar Wind. Geomagn. Aeron. 59, 639–650 (2019). https://doi.org/10.1134/S0016793219060069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793219060069

Navigation